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Abstract 

 

 The prevalence of work-related muscle pain is large in the general 

population, especially in the caregivers working in elderly institutions. Despite 

significant advances over recent years in some research areas, the mechanisms of 

why work-related muscle pain occurs and the pathophysiological mechanisms 

behind the disorders are still unclear. One suggested explanation is that such pain 

is caused initially by a limitation of the local muscle circulation, oxidative 

metabolism and fatigue. There is a lack of objective methods to measure the 

development and diagnosis of muscle fatigue and the necessary recovery time. 

 Chapter 1. The purpose of this chapter is to bring a general introduction 

and literature review about the assessment of erector spinae muscle related to 

biomechanics and metabolism aspects. Near-infrared spectroscopy (NIRS) is a 

non-invasive technique that allows for determination of oxygenation and blood 

flow. The parameters commonly measured by NIRS are 

oxyhemoglobin/myoglobin (Hb/MbO2), deoxyhemoglobin/myoglobin (Hb/MbR), 

and total hemoglobin/myoglobin (THb/Mb). Using NIRS, Chance et al (1992) 

reported that recovery time is the balance between oxygen supply and oxygen 

demand as the bioenergetic resources are restored following determined exercise 

The purpose of this thesis was to evaluate NIRS (1) as a method for measuring 

muscle reoxygenation recovery time and hemodynamics for the erector spinae 

muscle (ESM), and (2) to investigate whether variables measured by NIRS 

differed between caregiver’s movement during different simulated patient-

handling tasks. In addition, to contribute for reducing incidences of workers 



4 

 

illness and injury, thereby improving the overall well-being of workers. 

 Chapter 2. An incremental experiment was conducted to calculate the half 

time to recovery (hTR), along with its predictors, based on an incremental test 

using NIRS. As well as, to attempted to examine the interrelationship between the 

NIRS and EMG variables assessing the metabolic and electrophysiological 

condition of the ESM during and after isometric task. All eleven subjects (n=11) 

performed six incremental static trials over time randomly as follows: 10, 20, 30, 

40, 50, and 60s, with 15 min rest between each trial. A fast linear decreasing 

phase of oxygenation index at the beginning and a constant decreasing until the 

end of exercise was found on the results. The recovery period was followed by 

systematic increase of oxygenation index with the values being at or near baseline 

during the final 2 minutes. There were progressive and significant increases in the 

hTR of ESM related to the incremental time. There was a negative trend for a 

relationship between MF slope during the BSME test and an increase in hTR after 

the test. Considering that ischemic muscular activity occurs in this muscle, these 

results provide information about muscle aerobic and anaerobic function during 

and after exercise. 

 Chapter 3. A volitional exhaustion experiment was conducted with aim to 

assess ESM hTR by NIRS during isometric task. All eleven subjects (n=11) 

performed one single static task. Two min were measured as a baseline following 

by an endurance test until volitional exhaustion and subsequently 5 min of 

recovery period. Fast linear decreasing phase of tissue oxygenation index (TOI) at 

the beginning and a constant decreasing until the end of exercise. The half time to 

recovery (hTR) demonstrated to be between about 21 s and 35 s (right and left 
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side pooled). Mean EMG MF decreased progressively to nearly 70% of resting 

value in both sides. Furthermore, prolonged static posture might diminish 

oxygenation level and MF, increasing susceptibility to fatigue. The results 

suggested that the hTR can be an effect evaluations to measure muscle 

oxygenation after subjective fatigue. 

 Chapter 4. Simulated experiment with objective to estimate the low back 

joint moment and calculate the hTR during an isotonic muscle task was 

conducted. The study subjects were required to perform two distinct transfer 

tasks: 1) Elevation of the patient from a supine position in bed to a sitting position 

(SS), and 2) Transferring of the patient from sitting on the bed to sitting in a 

wheelchair (SW). An additional third task, namely, continuous performance of SS 

and SW (SS+SW) was also performed. The forces and moments of the L3/L4 

joint, hip joints, knee joints, and ankle joints were estimated using the kinematic 

and inertial properties of the body, together with the process of inverse dynamics 

and the developed free body diagram (FBD) for motion analysis. Simple main 

effect analysis showed that the hTR for SS+SW was significantly higher than 

those for SS and SW (p < 0.05), but there were no differences between the right 

and left lumbar during SS and SW. Low back muscles with their relatively small 

moment arms in relation to external forces contribute significantly to loading 

across intervertebral joints. These loads can challenge both tissue and structural 

tolerance of the spine. Not surprisingly, mechanical factors are often identified as 

the primary cause in a large proportion of low back disorders. This results 

suggested an adequate period of rest between patient’s transfer movement could 

avoid ESM fatigue and prevent low back pain. 
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 Chapter 5. General conclusions. The recent advanced of NIRS would help 

to refine the understanding of skeletal muscle oxygenation in more different 

pathophysiology conditions. The findings of this study have implications for 

future investigations on the mechanism of action of the low back muscles. A 

higher joint moment (i.e., 3D motion capture), a reduction in the strength (i.e., 

EMG), endurance, and decreased oxygenation levels (i.e., NIRS) of the low back 

muscles has been implicated as a contributory factor to fatigue. Adequate blood 

supply is one the most essential component to withstand fatigue and prevent the 

loss of lumbar muscle function. Therefore, this study could demonstrated an 

adequate period of rest between caregiver’s movements when transferring patients 

between bed and wheelchair.  This new knowledge results may help understanding 

the recovery time of the muscle oxygenation after work and further prevent 

fatigue and low back pain. 
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1.1 General Introduction 

 Work-related musculoskeletal disorders affect a large number of people in the 

world today. The prevalence of work-related muscle pain is large in the general 

population, especially in the caregivers working in elderly institutions.  

 The aging of the Japanese population is thought to exceed that of all other 

nations, with the country purported to have the highest proportion of elderly citizens. 

According to the statistics of the Japanese Health, Labor, and Welfare Ministry, the 

proportion of the elderly (65 years or older) reached 20.8% in the fiscal year 2011, and 

is estimated to increase to 39.6% in 2050 (Figure.1-1). This has induced various health 

issues among caregivers in nursing homes. The occupational condition is related to the 

requirement for the caregivers to repeatedly perform activities such as lifting the 

patients from and to anomalous postures.  

 

Figure 1-1: Japanese population in 2050. Japanese Health, Labor and Welfare (2011). 
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 Patient transfer has been found to be associated with most low back injuries 

suffered by caregivers (Russell et al. 2007; Schibye et al. 2003). Additionally, nurses 

and caregivers exhibit high rates of low back pain (LBP) and worker compensation 

claims for back injuries (Daynard et al. 2001). In the year 2011, the total annual medical 

cost of work-related LBP was estimated to be 82.14 billion yen (Itoh, Kitamura, and 

Yokoyama 2013). A recent systematic review particularly reiterated the prevalence and 

high risk of work-related LBP in patient-handling and nursing occupations (Daynard et 

al. 2001). 

 It is thus reasonable to suppress an increase of this medical cost by suppressing 

the occurrence of work-related LBP.  

 Identification and preventive procedures related to musculoskeletal disorders 

(MSDs) have been the major focus of the 12th Occupational Safety and Health Program 

(Ministry of Health, Labour and Welfare, Japan, 2013). Although knowledge has been 

gained about the possible causes of work-related LBP, little progress has apparently 

been made in preventing this critical work-related complaint. 

 

 

 

 

 

 



14 

 

 

1.2 Literature Review 

1.2.1 The Erector Spinae Muscle: Specifications and Assessments 

 The erector spinae originates from the sacrum, iliac crest, and the erector spinae 

aponeurosis. It inserts across a number of spinous processes at the lumbar and thoracic 

region and subdivisions insert across the ribs, cervical spinous processes and skull. It is 

likely that the muscle functions mainly to produce spine extension and rotation, as well 

as providing stability. The erector spinae has relatively uniform muscle architecture. 

The upper and lower fibers of the erector spinae have a similar physiological cross-

sectional area (Figure 1-2). Furthermore, their line of action over the lower thoracic and 

lumbar region is just underneath the fascia, such that forces in these muscles have the 

greatest possible moment arm and therefore produce the greatest amount of extensor 

moment with a minimum of compressive penalty to the spine (McGill 2007).  
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Figure 1-2: Erector spinae muscle. It extends throughout the lumbar, thoracic and 
vertical regions, and lies in the groove to the side of the vertebral column. 

 Probably the single most important mechanical function of the spine is to 

support load that arise from the interaction between external loads and muscular forces. 

Trunk muscles with their relatively small moment arms in relation to external forces 

contribute significantly to loading across intervertebral joints. These loads can challenge 

both tissue and structural tolerance of the spine. Not surprisingly, mechanical factors are 

often identified as the primary cause in a large proportion of low back disorders.  

 Consequently, knowledge of loads sustained by the spine and its hemodynamics 

parameters is necessary for a more rational design of spine injury prevention strategies 

and rehabilitation programs.   

 Growing research efforts for low back pain remains a major public health 

problem in the industrialized world. Tests of trunk muscle performance are essential to 

understanding the muscle strength/endurance. Assessing muscle dysfunction or 

increased fatigability have been also suggestive approach based on providing the 

patients with information on their physical potential and planning an efficacy 

rehabilitation program. Demoulin et al (20129) classified the assessment of trunk in:  

 Static test; Dynamic tests; Dynamometric tests; Muscle strength tests; Static 

strength test; Isokinetic test; Static endurance; Dynamic endurance; Muscle 

fatigue tests 

 Several studies over the years have shown the flexion-relaxation phenomenon or 

the apparent myoelectric silence of the low back extensor muscles during a standing-to-

full flexion maneuver. As one bends forward, the spine flexes and the extensors undergo 

eccentric contraction. As full flexion is approached, the passive tissue rapidly take over 
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moment production, relieving the muscle of this role and accounting for myoelectric 

silence (Hashemirad et al. 2009; de Looze et al. 1998).  

 The “passive” of the lumbar extensor muscles appeared to occur only in an 

electrical sense because they generated substantial force elastically during full spine 

flexion through stretching. 

Mechanical Loading and Field-based Risk Factors 

 The consequences of high mechanical loading on low back could produce low 

back pain and injuries attributed to manual lifting activities. It continue as one of the 

leading occupational health and safety issues facing preventive medicine. Despite 

efforts at control, including programs directed at both workers and jobs, work-related 

back injuries still account for a significant proportion of human suffering and economic 

cost to this nation. The majority of specific risk factors that are addressed in the 

epidemiological literature are (McGill 2007): 

• Static work postures 

• Seated work postures 

• Frequent bending and twisting 

• Lifting, pulling and pushing 

• Vibration 

• Generation of spine power 

 The National Institute for Occupational Safety and Health report (Waters et al. 

1993) provides a good review linking activities requiring lifting, pushing and pulling 

with increased risk of LBD. Nursing and healthcare workers are annually listed as 
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having the second highest injury and severity rates among listed professions in the 

United States by the NIOSH. 

 In aged society, like Japan, various health issues occur in caregivers in nursing 

homes. Risk factors include physical workload such as the manual lifting and 

transferring of patients, working conditions such as working time and rest during the 

night shift, and the working environment. Itoh et al (2013) have indicated that in 2011, 

the total annual medical cost for work-related low back pain was 82.14 billion yen, 

consisting of 26.48 and 55.66 billion yen for inpatients and outpatients respectively, 

resulting in a considerable economic burden to Japanese society. 

Muscle Contraction by Biomechanical Reactions 

 ATP provides the energy for this contractions when it is dephosphorylated at the 

myofibril by ATPase. Next, the ATP is reformed in the creatine kinase reaction when 

ADP is rephosphorylated by phosphocreatine (PCr). ATP concentration remains 

constant at the expense of PCr as shown by the sum of these two reactions. This 

indicated that the net result of muscular contraction is a breakdown of PCr and one 

molecule of phosphate (Pi) is formed for every molecule of PCr dephosphorylated. 

Creatine is subsequently rephosphorylated by ATP generated from oxidative 

phosphorylation. PCr, which undergoes breakdown in the reaction, represents the most 

immediate energy reserve in skeletal muscle for ATP resynthesis at the onset of 

muscular contraction (McMahon and Jenkins 2002) (Figure 1-3). PCr represents the 

most immediate reserve for the rephosphorylation of adenosine triphosphate (ATP). As 

a fall in the level of PCr appears to adversely affect muscle contraction. 



18 

 

 

Figure 1-3. Muscle contraction is derived from the hydrolysis of adenosine triphosphate 
(ATP) to adenosine diphosphate (ADP) and inorganic phosphate (Pi). 

 

Mechanism of Muscle Fatigue 

The common definition of fatigue proposed by Edwards (1983) states that 

fatigue is a “failure to maintain the required or expected force (or power output).” The 

definition used in this study are presented by (Gandevia 2001) as the definition of 

muscle fatigue reflects both peripheral and central fatigue and focuses on the reduction 

in force that occurs during fatigue:  

 Muscle fatigue: any exercise-induced reduction in the ability of a muscle to generate 

force or power; it has central and peripheral causes. 

 Peripheral fatigue: fatigue produced by changes at or distal to the neuromuscular 

junction. 

 Central fatigue: a progressive reduction in voluntary activation of muscle during 

exercise. 

While the fatigue of organism may be described by the progressive reduction of reserve 

energy or the rate of its expenditures, a similar description for individual tissues is 

obscure. A variety of methods have been used for measuring localized muscle fatigue.  
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 Fatigue is a complex and multifaceted phenomenon, the underlying mechanisms 

of which remain somewhat elusive. The lack of clear comprehension regarding the sites 

and mechanisms of skeletal muscle fatigue is indicative of the complexity of the fatigue 

process.  
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1.2.2 Near-infrared Spectroscopy (NIRS) 

 NIRS is a non-invasive, optical technique that has been widely used to monitor 

tissue oxygenation through the absorption of light photons in the 700-1000nm spectrum 

by hemoglobin (Hb), myoglobin (Mb) and cytochrome oxidase (Van Beekvelt et al. 

2001; Boushel and Piantadosi 2000; Ferrari, Muthalib, and Quaresima 2011; Kell and 

Bhambhani 2008; Ryan et al. 2012).  

Measuring Muscle Oxygenation 

 Over the last few decades, functional near-infrared spectroscopy (NIRS) has 

been attracting interest from the psychology and medical imaging communities for its 

ability to non-invasively measure the cerebral hemodynamic changes associated with 

functional brain activity (Chance et al. 1992; Delpy et al. 1988; Hamaoka et al. 2007; 

Wolf et al. 1997). NIRS is an optical spectroscopy technique, which uses time-resolved, 

multi-wavelength measurements to infer changes in the optical absorption of tissue and 

thereby to report changes in oxy- and deoxy-hemoglobin, the two primary absorbing 

chromophores in biological tissue that vary dynamically with a functional task.  

 Maybe one of the pioneers to starts experiments on muscle oxygenation in vivo 

by photoelectrically recording was G. A. Millikan. Until that time, papers had been 

described how the saturation changes in vivo by chemical specific and time sensitive. 

By using a soleus muscle of the cat, the findings was a very rapid recovery of the 

muscle after a maximal tetanic contraction of a few seconds durations, suggesting that a 

very large fraction of the total oxygen required by normal muscular activity is used up 

at the moment of contraction and not afterward (Millikan 1937). 
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 However, the ratio of hemoglobin to myoglobin in human skeletal muscle is 

approximately ten, showing that the majority of the NIRS signals comes more from 

hemoglobin than myoglobin (Seiyama, Hazeki, and Tamura 1988). More quantitative 

muscle studies were performed using a three-wavelength NIRSCWS instrument (OM- 

100A, Shimadzu Co., Japan). This instrument was used in several studies, i.e. to 

develop a forearm VO2 method (Kime et al. 2003), to investigate the influence of 

adipose tissue thickness on the NIR measurements (Homma, Fukunaga, and Kagaya 

1996).  

 Quantitation was further improved by combining four-wavelength attenuation 

data, measured by the NIRO500 (Hamamatsu Photonics, Japan). The NIRO500 was 

used in several studies, i.e. to develop forearm VO2 and flow methods (De Blasi et al. 

1993), to investigate the effect of the treadmill speed and slope on the quadriceps 

oxygenation (Grassi et al. 1999).  

 One of the methods for assessing muscle oxidative capacity in vivo includes 

muscle biopsy (Costes et al. 2001). Muscle biopsy may be useful and regarded as the 

gold standard, but the inconvenient to apply in many physiological and clinical 

conditions because of its invasive patterns. Phosphorus magnetic resonance 

spectroscopy (P-MRS) can provide a non-invasive and repeated method to measure 

muscle energy metabolism. The P-MRS device, however, is rather expensive and 

requires careful maintenance for precise measurements. Furthermore, this methodology 

has its own limitations in practical use (Brizendine et al. 2013; Fulford et al. 2014). In 

1992, Chance at al revealed a study about the exercising skeletal muscle with NIRS. 
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NIRS methodology is a useful tool because it is both non-invasive and inexpensive 

when compared to P-MRS.   

 Fulford et al (2014), reported in their study with P-MRS and NIRS, a good 

reliability during a spinal muscle function. Ten healthy participants performed exercise 

involved holding the upper body until fatigue. ICCs indicated a good to excellent 

reliability of baseline measures and of amplitude changes during fatigue and recovery. 

Measurement Principle of NIRS 

a) Changes in concentration 

• Changes in oxygenated hemoglobin: ΔO2Hb 

• Changes in deoxygenated hemoglobin: ΔHHb 

• Changes in total hemoglobin: ΔcHb 

• Changes in difference between oxidized and reduced cytochrome oxidase: 

ΔCtOx 

b) Tissue oxygenation index (TOI)  

• Ratio of oxygenated to total tissue hemoglobin, expressed in percentage (%). 

 The detection probe has a light sensor (photodiode) consisting of three small 

sensors (Figure 1-4). Changes in concentration are calculated from changes in light 

intensity detected by the center sensor, and TOI values are calculated from the light 

attenuation slope along the distance (p) from the emitting point, δA/δp, detected by the 

three sensors. 
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Figure 1-4. Schematic measurement principle and structure of a NIRS probe, consisting 
of three photo diode sensors. 
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 Until now, there are no “Gold standard” for in vivo measurement with 

oxygenation monitors using NIRS, because such standards are based upon experience 

with a variety of devices and/or methods, which do not presently exist in sufficient 

numbers. This situation makes it difficult to evaluate data measured with NIRS device.  

 

Tissue Oxygenation Index (TOI) as Parameter of NIRS 

 NIRS method is based upon the relative transparency of biological tissue to light 

in the near-infrared part of the light spectrum. Signal detection is based on levels of 

light directed through the muscle and picked up by the detector after the light has 

travelled through tissue.  

TOI indicates the dynamic balance between oxygen supply and oxygen consumption in 

tissue capillaries, arterioles and venules (Fulford et al. 2014; Taelman et al. 2011): 

TOI =
𝑘𝑘.𝐻𝐻𝐻𝐻𝐻𝐻₂

𝑘𝑘.𝐻𝐻𝐻𝐻𝐻𝐻₂+ 𝑘𝑘.𝐻𝐻𝐻𝐻𝐻𝐻
 

 

where k = constant scattering distribution; HbO2 hemoglobin concentration; HbR 

concentration in reduced hemoglobin. 

 NIRS monitoring system implemented in this research was performed by NIRO-

200NX (Hamamatsu Photonics, Hamamatsu city, Japan), which simultaneously 

implement BL (Beer-Lambert), and SRS (Spatially resolved spectroscopy) methods 

(Figure 1-5). 
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Figure 1-5: NIRO 200NX (Hamamatsu Photonics, Japan). 
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 NIRS parameters provide a measure of concentration changes in oxyhemoglobin, 

deoxyhemoglobin, and total hemoglobin with respect to an arbitrary initial value, and 

are expressed in μmol/L.cm. These measures could be converted to μmol/L through 

multiplication  by the interoptode distance (4 cm in this study) and the path-length 

factor. As for SRS, two parameters are provide, one gives information about tissue 

oxygenation (TOI, Tissue oxygenation index), it is expressed in % and represents the 

percentage ratio of oxygenated hemoglobin to total hemoglobin. The other parameter is 

again a measure of total hemoglobin contents in the tissue (THI, total hemoglobin index) 

and is expressed in arbitrary units. In this device, cannot discriminate between 

hemoglobin and cytoplasmatic myoglobin, therefore, all measurements actually refer to 

[hemoglobin+myoglobin] in the sample volume. 

Recovery Time Measured by NIRS 

 (Luczak and Rohmert 1984), defined recovery as the regeneration of decreased 

maximal strength and strength reduction as a function of the degree of fatigue. However, 

the aim of every cell to balance out the capacity of lost (fatigue) by its activity, a 

process of recovery occurs. According to Chance et al (1992), recovery is the time 

required to restore the intramuscular oxygenation level after exertion may be an 

indicator for the oxygen-retaining capacity of muscles. 

 Half time to recovery (hTR) is the index of oxygen demand and delivery 

measure after exercise, which is also a marker of aerobic-resaturation of exercise-

desaturated (Chance et al. 1992).  

 Here we determined hTR as the time takes to reach 50% of the difference 

between the minimum oxygenation level at the end of the contraction phase and the 
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maximal level at recovery period. Parameters were analyzed using calculations obtained 

by monoexponential curve fitting (Allart et al. 2012; Buchheit and Ufland 2011; Chance 

et al. 1992; Ding et al. 2001; Motobe et al. 2004; Olivier et al. 2013) (Figure 1-6). 

 (Iotti et al. 2004), found oscillation of phosphocreatine re-synthesis during 

recovery from exercise in humans. In their experiment using P-MRS, a mathematical 

model implies patterns of PCr recovery othen than mono-exponential ones care 

conceivable, the mono-exponential pattern being a particular case of function which are 

solutions of the differential equation upon which the model is based. Phosphocreatine is 

present in the skeletal muscle and other tissues, where it represents a storage of 

available energy able to buffer energy requirements of the cell. During muscle 

contraction phosphocreatine is used and it re-synthesized during recovery. When the 

metabolic stress is over, phosphocreatine is re-synthesized from ATP which in turn is 

synthesized by the energy-producing mitochondrial machinery. 

 Reoxy-rate is now been accepted as a good non-invasive marker of muscle 

aerobic function after dynamic exercise (Ichimura et al. 2006; Puente-Maestu et al. 

2003). Additionally, Reoxy rate has been shown to present similar recovery kinetic than 

PCR after submaximal exercise (McCully et al. 1994). 
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Figure 1-6: Example of a muscle oxygenation recording during and after effort. Change 
over time in HHb, HbO2 and tHb, 1/2TR (recovery half time). E Allart and others, 
‘Evaluation of Muscle Oxygenation by near-Infrared Spectroscopy in Patients with 
Becker Muscular Dystrophy.’, Neuromuscular disorders : NMD, 22 (2012), 720–27. 
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1.2.3 Electromyography (EMG) 

 Muscle force is produced when a group of muscle fiber are activated by their 

common motor nerve, in a so-called motor unit (MU). Surface electromyography (EMG) 

registers the electrical activity of a number of motor units being activate and the signal 

amplitude, typically measured through the root mean square (RMS) value of the EMG 

signal, is a measure of the extend of muscle activity.  

Estimation of Erector Spinae Muscle fatigue with Electromyography 

 Electromyography has been considered a reliable tool for an indication of 

localized muscle fatigue (De Luca 1997). In recent years authors have state that the 

median frequency (MF) of the EMG power spectrum is sensitive to the physiological 

manifestation of fatigue (De Luca 1997; Tsuboi et al. 1994). It was observed by De 

Luca (1997), a decrease in the MF in the power spectrum (when calculated with a fast 

Fourier transformation) under sustained isometric contraction, which is interpreted as 

muscular fatigue (Figure 1-7). 
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Figure 1-7: Diagrammatic explanation of the spectral modification that occurs in the 
EMG signal during sustained contractions. The muscle fatigue index is represented by 
the median frequency of the spectrum. (De Luca, 1997). 
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Figure 1-8: Multichannel telemetry surface electromyography with wireless electrodes 
(WEB-7000, Nihon Kohden, Japan) 
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 The WEB-7000 Multichannel Telemetry system EMG (NIHON KOHDEN, 

Japan) was used to monitor muscle activity in all the experiments in this study. This 

system primarily consisted of EMG (ZB-150H), EMG transmitters (cordless telemetry 

electrodes), a BIO Repeater (ZB-700H), receiver antenna (ZR-700H), a receiver, and a 

personal computer (Figure 1-8). 

 Applying EMG to assess the state of a group of muscles in the lower back is to 

detect signals from deepen layers located about the spinal column which contribute to 

extension and rotation of the trunk. Contractile fatigue is susceptible to subjectivity 

because contractile force may decrease due to psychological factors as well as to 

physiological factors. The spectral variables decrease continuously from the onset of 

contraction, thus providing an indication of the rate of the fatigue process early in the 

contraction. 

 De Luca (1997) showed that a decrease in conduction velocity is causally related 

to a decrease in the pH of a bath fluid surrounding the muscle. During sustained 

contraction, the pH of the interstitial fluid decreases as lactic acid accumulates in the 

membrane environment. Thus, the rate of blood flow in the muscle can affect strongly 

the behavior of the EMG spectral variables. Performing the contraction in an isometric 

mode where the internal pressure remains reasonably constant and does not alter the rate 

of blood flow, as is the case in dynamic contraction. 
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1.2.4 NIRS and EMG 

 Simultaneous measurements in the right and left ESM using EMG and NIRS 

have been demonstrated to obtain a reliable quantitative data (van Dieën et al. 2009; 

Kankaanpää et al. 2005; Masuda, Miyamoto, and Shimizu 2006; Movahed et al. 2012; 

Shin and Kim 2007; Yang et al. 2007). Van Dieen et al (2007) have designed whether 

trunk extensor fatigue occurs during low-level activity with both machines. They are 

results suggested that even at low-level of EMG activity, fatigue manifestation were 

found. A similar change of Hb and EMG frequency content was found in ESM 

contraction at 60% MVC (Kramer et al. 2005). We adopted in our study the BSME 

posture and the mean MVC was found at 40%.  

 A moderate correlation (r =  0.3) between change in oxygenation and EMG 

frequency content has also been reported for ESM active ate approximately 50% MVC 

(Albert et al. 2004). Two studies on ESM activity  in approximately 50-60% MVC 

contractions reported substantial between-subjects variations in the pattern of change in 

hemoglobin (Kell, Farag, and Bhambhani 2004; Kramer et al. 2005), while a third study 

reported a consistent decrease of 60% MVC (Yoshitake et al. 2001). These results 

suggest that blood supply starts to be a limiting factor in these muscles only around 

these levels of contractions.  

 Shin & Kim (2007) identified the relationship between the cumulative fatigue of 

trunk muscles and the recovery time during dynamic lifting and lowering in symmetric 

and asymmetric postures. They demonstrated that the trunk muscles are physiologically 

compensated by the good supply of oxygen in spite of the high force generated during 

dynamic lifting.  
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1.3 Research Objectives 

 This research was approached from the standpoint of how muscle contractions 

affects the myoelectric and hemodynamic manifestations of the erector spinae muscle. 

Further, three main objectives were developed to outline this results. The first objective 

was to assess the hemodynamic aspects of erector spinae muscle during and after 

isometric contraction and additionally finding the relationship between myoelectric and 

hemodynamic evaluation. The second objective was to assess the erector spinae muscle 

during and after fatigue task with EMG and NIRS. The third objective was to determine 

whether caregiver’s movements affect the hemodynamic manifestation during and after 

patient-handling task on simulated experimental test.  

1.4 Research Significance 

 This research will have implications across multiple activities with the most 

obvious being related to healthcare. The potential benefit of this research is that it 

quantified the effects of hemodynamics manifestation of the muscle contraction and 

clarify the recovery time; it would not only reach the caregivers during patient-handling 

task, but in athletes in sports and other kinds of workers. Additionally, it is important to 

evaluate the ratio work/rest and prevent muscle to fatigue and pain. 
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1.5 Dissertation Organization 

 This dissertation is organized following the manuscript format. The manuscripts 

constitute the body of the dissertation. Chapters 1 and 5 are a traditional dissertation 

introduction and conclusion, respectively. Chapter 2, 3 and 4 are stand-alone 

manuscripts reporting the results and conclusion of this study by experimental 

procedures. Chapter 2 is an experimental research paper outlining the incremental test 

and the influence of myoelectric and hemodynamic manifestations during isometric 

contractions of the erector spinae muscle. Chapter 3 brings the relationship between 

myoelectric and hemodynamic manifestations during an isometric contraction until 

volitional fatigue. Chapter 4 represents the experimental research about the patient-

handling task by analyzing the caregivers L3/L4 joint moment and hemodynamic data 

from the erectors spinae muscle contraction. Chapter 5 represents the overall 

conclusions and recommend for the future work and limitations. 
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Chapter 2 

Estimation of Muscle Reoxygenation Recovery Time after 

Static Endurance Test using NIRS 
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2.1. Introduction 

 The erector spinae muscle (ESM) plays an important role in providing 

mechanical stability and controlling movement of the lumbar spine and trunk. Adjusting 

muscle function in vivo is important for understanding the mechanics and for 

developing appropriate assessment and training protocols, and treatments to prevent 

injuries. To prevent injury, it is important to comprehend work/rest schedules (Shin and 

Kim 2007).  To investigate the mechanics related to the condition and recovery of 

oxygenation level of the muscle, several authors proposed the use of surface 

electromyography(EMG) and near-infrared spectroscopy (NIRS) to measure the 

electrical and metabolic activities in the contracting lower back muscles (Albert et al. 

2004; Kell and Bhambhani 2006; Olivier et al. 2013; Yoshitake et al. 2001).  

 Using NIRS, Chance et al (1992) reported that recovery time is the balance 

between oxygen supply and oxygen demand as the bioenergetic resources are restored 

following determined exercise. On the other hand, it can be interpreted as a measure of 

the time needed for replenishment of oxygen and energy deficits occurring during 

exercise by tissue respiration under adenosine diphosphate control. Several studies have 

investigated the relationship between the exercise rate of Oxy-Hb/Mb and the muscle 

oxidative capacity (Bangsbo and Hellsten 1998; Buchheit and Ufland 2011; B. Chance 

et al. 1992; Hanada 2000; Kawahara et al. 2005; McCully et al. 1994; Puente-Maestu et 

al. 2003).  

 Furthermore, other studies have shown correlations between oxygenation level 

determined by NIRS and work load, lactic acidosis, and phosphocreatine level (B. 

Chance et al. 1992; Ding et al. 2001; Grassi et al. 1999; Masuda et al. 2005). Yoshitake 
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et al. (2001), examined the oxygenation responses of the ESM during static contraction 

to fundamentally understand the fatigability process of ESM using NIRS. They showed 

that low back muscle oxygenation decreased during static contractions with an intensity 

ranging from 2% to 80% of maximum voluntary contraction (MVC) as the endurance 

time of exercise increased (Kell and Bhambhani 2006, 2008; Yoshitake et al. 2001).  

 One metabolic consequence of high-intensity/short-duration muscle contraction 

is subsequent impaired performance. While factors such as substrate depletion may 

strongly contribute to fatigue during prolonged exercise, the precise mechanisms of 

recovery after brief high-intensity exercise using an incremental time test remain 

unclear. Thus, a clear understanding of ESM reoxygenation time after static 

contractions is important for understanding the mechanism of recovery using NIRS. 

 Another noninvasive electrophysiological method of estimation of muscle 

activity during contraction is EMG power spectral analysis can be used to show that 

muscle fatigue is associated with shifts in median frequency (MF) and/or mean power 

frequency toward lower values (De Luca 1997; Tsuboi et al. 2013). Using EMG, studies 

have shown that a progressive decline in MF is a strong predictor of back muscle 

endurance (De Luca 1997; Yoshitake et al. 2001). 

 Previous studies have shown that NIRS and EMG can be used to examine low 

back muscle condition during and after exercise. However, no studies have used NIRS 

to examine the heterogeneity in the reoxygenation level and recovery time after an 

incremental over time static endurance test for the ESM.  

 Therefore, the purpose of this study was to estimate the oxygenation level and 

calculate the half time to recovery (hTR), along with its predictors, based on an 
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incremental test using NIRS. We also attempted to examine the interrelationship 

between the NIRS and EMG variables to assess the metabolic and electrophysiological 

condition of the ESM during and after isometric contraction. 

2.2. Methods 

2.2.1. Participants 

 Written informed consent of the understanding of the purpose of the study and 

potential risks and benefits was obtained from 11 volunteers who were healthy female 

college students. Inclusion criteria were age between 18 and 20 years; no current low-

back pain; no metabolic, cardiovascular, pulmonary, or orthopedic disorders; body mass 

index <22; and skinfold thickness lateral of the L3 spinous process <18 mm. The 

protocol (number: MH049, October 22nd 2015) was approved by the Prefectural 

University of Hiroshima Ethical Committee and complied with the ethical standards of 

the 1975 Helsinki Declaration, in terms of ethical principles for medical research 

involving human subjects. 

2.2.2. Subcutaneous Adipose Tissue Thickness (ATT) Measurement 

 Subcutaneous ATT was measured by skinfold calipers at the NIRS measurement 

site (3 cm right and left from the spinous process at L3 as proposed by Kell et al (2008)). 

Three consecutive measurements were performed and the ATT was defined as the mean 

ATT as described by (Kankaanpää et al. 2005) (Table 2-1). 
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2.2.3. Exercise Protocol 

 The protocol was performed in 2 days, with an interval of at least 48 hours. On 

the first day, instructions were given; participants were familiarized with the procedure, 

and maximal voluntary contraction (MVC) using EMG was measured in all subjects. 

MVC was assessed for determination of maximal neuromuscular activity on upper and 

lower trunk extension (Vera-Garcia, Moreside, and McGill 2010). On the second day, 

measurements were performed at baseline in the prone position for 2 min. Subsequently, 

all subjects performed six incremental static trials over time randomly as follows: 10, 20, 

30, 40, 50, and 60 s, with 15 min rest between each trial (Figure 2-1).  

 

Figure 2-1. Schematic representation of the experimental design. After 1-min rest and 
2-min in the prone position at baseline, subjects performed the modified Biering-
Sørensen Muscle Endurance (mBSME) test six times before the recovery time of 5 
minutes. Around 15 min of rest was allowed between each different time protocol. 
Electromyography data were extracted only between performance of the mBSME test 
and near infrared spectroscopy from baseline period to the end of the recovery period. 

 

 To perform the modified Biering-Sørensen Muscle Endurance (mBSME) test, 

the subject lay prone on a plinth with the iliac crest aligned with the edge of the table. 

Three straps (around the pelvis, knee, and ankles) were used to fix and support the 

lower body to the table (Figure 2-2). During the mBSME test, the subjects had to 

place their hands at the side of their heads, with their elbows out to the side at trunk 

level. They were also instructed to look downward at a visual fixation point (Albert et al. 
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2004; Coorevits et al. 2008; Demoulin et al. 2006; Moreau et al. 2001; Tsuboi et al. 

2013). Subjects were asked to maintain that position until each trial was completed. 

 

Figure 2-2: Illustration of the modified Biering Sorensen Muscular Endurance test 
(mBSME) position with the subject strapped at the ankle, legs, and gluteal regions.  
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2.2.4. Near-infrared Spectroscopy 

 Two spatial resolved NIRS probes (NIRO-200NX, Hamamatsu Photonics, Japan) 

were placed (double adhesive tape) using the manufacture’s custom-designed optically 

dense black holder, bilaterally at the third lumbar vertebra over the ESM, 3 cm from the 

spinous process (Albert et al. 2004; Kell and Bhambhani 2006). The interoptode 

spacing (between the emitter and detector) was 4 cm. The NIRO-200NX provides a 

ΔO2Hb and ΔOHHb using differences in absorption characteristics of light at 775, 810, 

and 850 nm. It is not possible to distinguish between the relative contributions of 

hemoglobin and myoglobin because of the identical spectral characteristics. However, 

the major signal on NIRS is provided by hemoglobin (B Chance et al. 1992). The 

difference between Oxy-Hb and Deoxy-Hb can be considered the oxygenation index 

(Grassi et al. 1999; Olivier et al. 2013), which indicates the relative change in Oxy-Hb 

and Deoxy-Hb, that is, the change in the oxygenation level in the area of interest.  

 To improve intersubject comparability, the oxygenation level were expressed as 

the change from baseline in percentage. The NIRS signals were collected at a sampling 

frequency of 20 Hz, and the data were stored in a USB memory card before analysis by 

PC. Data with noises and artifacts collected from NIRS was pre-processed using 

MATLAB Savitzky-Golay filtering (Mathworks, Massachusetts, USA), before been 

analyzed by customized Microsoft Excel (Microsoft Corporation, Washington, USA) 

software program. (Thanh Hai et al. 2013). 
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2.2.5. Calculation of Half Time to Recovery 

 The hTR was calculated through monoexponential curve fitting as the time taken 

to reach 50% of the post-exercise maximal value(Allart et al. 2012; Buchheit and 

Ufland 2011; B. Chance et al. 1992; Ding et al. 2001; Motobe et al. 2004; Olivier et al. 

2013). This was used to provide a comparable variable for evaluating oxidative 

metabolism in muscles from incremental time trials. 

2.2.6. Surface Electromyography 

 Two wireless electrodes (WEB-7000, Nihon Kohden, Japan) were attached on 

the back 3 cm from the L3 spinous process bilaterally over the ESM, proximal to the 

NIRS probes without compromising any evidence. The signal was collected at a 

sampling rate of 1000 Hz, and was low- and high-pass filtered at 30 Hz and 500 Hz. 

Power spectral analysis was performed in 1 s epochs for the myoelectric signal from the 

muscle over the duration of the exercise. Fast Fourier Transform (FFT) of 4096 point 

(Hamming window processing) was performed. The MF of each task was then 

calculated using BIMUTAS software (Kissei Comtec Co, Japan).  

2.3. Statistical Analysis 

 All data were analyzed using SPSS version 12.0 (Chicago, USA), with alpha 

level set at .05 (p ≤ 0.05). Mean and standard deviation were used to describe all 

variables. A series of one-way analyses of variance (ANOVA) were used to determine 

main and interaction effects, while Tukey post hoc comparison was used to detect 

significant differences when ANOVA effect was significant (p < .05). Pearson product 

moment correlation coefficients (r) were calculated to determine the relationship 
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between EMG MF, hTR, mBSME time, and VAS score. A linear regression analysis 

was performed to determine the independent variables that best predicted recovery time.  

2.4. Results 

All participants completed the six trials. The physical characteristics are summarized in 

Table 2-1.  

Table 2-1.  Physical characteristics of subjects 

 

 

 

 

 

 

 

 

 

Variables Subjects (n = 11) p value 
Age (years) 18.8(0.71) .938 
Skinfold left (mm) 15.7(1.85) .952 
Skinfold right (mm) 17.9(1.57) .652 
Height (m) 1.59(0.01) .899 
Body mass (kg) 50.8(4.63) .961 
BMI (kg/m²) 20.1(1.83) .995 
Right side dominant 11   
Values are reported as mean (±SD).  
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2.4.1. NIRS Parameters 

 

Figure 2-3: 3D ribbon graph showing trend in ESM oxygenation in a single subject 
during six trials of the mBSME test (10s, 20s, 30s, 40s, 50s and 60s) with NIRS. Two 
min of baseline, exercise period and 5 min of recovery period. Oxygenation index value 
was normalized (%). 

 

 

 

 



46 

 

 Figure 2-3 shows the NIRS parameters over one subjects during Baseline, 

mBSME and Recovery period of each trial. The oxygenation index was normalized in 

percentage. We found a fast linear decreasing phase of oxygenation index at the 

beginning and a constant decreasing until the end of exercise. The recovery period was 

followed by systematic increase of oxygenation index with the values being at or near 

baseline during the final 2 minutes.  

 A paired t-test showed no statistically significant differences in the mean hTR 

for the right and left ESM, t (65) = .437, p = .664.  

 There were progressive and significant increases in the hTR of ESM of the NIRS 

related to the incremental time. 

 On the right ESM, one-way ANOVA was conducted and there was a statistically 

significant difference between hTR and the duration of the incremental time (F (6,70) = 

13.838, p = .001). The effect size of partial ETA squared 0.542. Tukey post-hoc test 

revealed that the hTR after each task statistically significantly increased from the 40s 

(27.4 ± 10.6s, p = 0.037) to the 50s (32.4 ± 12.7s, p = .001) and 60s (39.9 ± 12.1s, p 

= .001) trials compared to that for the 10s trial (13.1 ± 2.8s). There were no statistically 

significant differences between the 10s and 20s (17.5 ± 6.1s, p = .961) and 30s (24.3 ± 

7.4s, p = .186) trials (Figure 2-4).  
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Figure 2-4: Mean and standard deviation of half time to recovery after six trials (10s, 
20s, 30s, 40s, 50s, and 60s) of the modified Biering-Sorensen Muscle Endurance test.＊ 

indicate a significant difference. 

 

 For the left L3, a statistical difference was found by one-way ANOVA (F(6,70) 

= 24.070, p = .001). The effect size of partial ETA squared 0.673. Tukey post-hoc test 

revealed that the hTR statistically significantly increased from the 40s (25.8 ± 8.9s, p = 

008) to the 50s (38.2 ± 7.5s, p = .001) and 60s (39.4 ± 9.6s, p = .001) trials compared to 

that for the 10s trial (13.1 ± 2.8s). There were no statistically significant differences 

between the 10s and 20s (15.3 ± 3.5s, p = .979) and 30s (22.3 ± 6.5s, p = .110) trials 

(Figure 2-4).  
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2.4.2. EMG Parameters 

 It was found that the MF decreased progressively as an incremental time of 

exercise from 79.2±13.4Hz (10s) to 63.8±8.3Hz (60s). 

A paired t-test showed no statistically significant difference in the mean MF between 

the right and left ESM, t (65) = .1.869, p = .067. 

 There was a statistically significant difference between incremental time trials, 

as determined by one-way ANOVA (F(5,60) = 3.467, p = .008), in the mean MF. A 

Tukey post-hoc test revealed that the 50 s and 60 s trials showed statistically 

significantly lower MF (64.6 ± 7.8 Hz, p = .027; and 63.8 ± 7.1 Hz, p = .017, 

respectively) than the 10s trial (79.2 ± 13.4 Hz). There were no statistically significant 

differences in the MF between the 10s and 20s (74.2 ± 12.1 Hz, p = .889), 30s (72.0 ± 

12.4 Hz, p = .627), and 40s (67.1± 9.8 Hz, p = .104) trials (Figure 2-5). 
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Figure 2-5: Mean and standard deviation of electromyography median frequency (Hz) 
during the modified Biering-Sorensen Muscle Endurance test. * P<0.05. 

 

2.4.3. Correlations between NIRS and EMG 

 There was a trend for a relationship between MF slope during the BSME test 

and an increase in hTR after the test (right r2 = -0.98, p =.001). The relationship 

between hTR (right and left sides of ESM are pooled) and MF and VAS are 

demonstrated on Figure 2-6 and 2-7.  
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Figure 2-6: Relationship of changing half time to recovery (hTR) measured by NIRS 
and median frequency (MF) measured by EMG. 

 

Figure 2-7: Relationship between half time to recovery (hTR) and visual analogue scale 
(VAS). 
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Figure 2-8: Correlation coefficient (Pearson), between MF (EMG) and TOI (NIRS) 
during exercise. 

 

2.4.4. Prediction of Half Time to Recovery (hTR) 

 A simple linear regression was calculated to predict ESM (right side) hTR in 

seconds based on incremental time (s). A significant regression equation was found 

(F(1,64) = 62.076, p < .001), with an r2 of .492. The regression equation developed to 

predict hTR for the right ESM was: 

RL3 hTR (s) = 7.699 + .518 Incremental time (s) 

 Therefore, .518s was needed for the muscle to recover to half of the 

reoxygenation level from baseline by adding one second of isometric contraction.  

 Another simple linear regression to predict hTR (s) from the ESM (left side) was 

calculated based on incremental time (s). A significant regression equation was found 

(F(1,64) = 131.545, p < .001), with an r2 of .673. The regression equation developed to 

predict recovery time for the left ESM was: 
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LL3 hTR (s) = 4.819 + .593 Incremental time (s)  

 Then, hTR for the left side of the ESM increased to .593s for each second of 

increment of exercise time. 

2.5. Discussion 

 This is the first report to indicate that longer incremental over time test duration 

results in a longer reoxygenation time after static muscular test for the ESM, 

considering the electrophysiological and metabolic responses recorded simultaneously. 

MF of the myoelectric signals has been shown to be more sensitive to fatigue during 

sustained isometric contractions such as those during the BSME test(Tsuboi et al. 1994). 

These deoxygenation changes in muscle during exercise that reduce MF are thought to 

be metabolic acidosis and metabolite deposition(Albert et al. 2004; De Luca 1997).  

 Savitzky-Golay filtering have been used to smooth signals and images with 

noises as well as artifacts (Thanh Hai et al. 2013). In this study, the using a MATLAB 

software, Savitzky-Golay filtering was applied to reduce spikes noises of NIRS signal. 

After filtering, data allow us to recognizing the oxygenation level easier compare to raw 

data. 

 During a static endurance test, MF could change because of muscle acidosis, but 

this change might be attenuated if, over the course of the contraction, larger motor units 

of the muscle were recruited(Albert et al. 2004). These factors reduce the conduction 

potentials that propagate along the sarcolemma, consequently reducing the MF of the 

myoelectric power spectrum when analyzed by EMG(De Luca 1997).  
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 Our NIRS data indicate that muscle oxygenation level dramatically decreases 

and then remains low during exercise (Figure 2-3). This observation might be due to the 

slight interruption of oxygenation during the isometric exercise by increased 

intramuscular pressure(Hamaoka et al. 1996; Yoshitake et al. 2001).  

 Considering that ischemic muscular activity occurs, these results provide 

information about muscle aerobic function and have good agreement with previous 

studies(Allart et al. 2012; Kell and Bhambhani 2008; Olivier et al. 2013; Yoshitake et 

al. 2001). Specifically, we demonstrated that as the duration of the incremental test over 

time increases, the hTR needed for the ESM to return to baseline level, as determined 

by NIRS, after the mBSME test increases. Kell(Kell and Bhambhani 2008) et al 

reported a similar result. Oxygen availability is important for the maintenance of muscle 

contraction. Correspondingly, increase in oxygen consumption decreases the ability to 

maintain muscle contraction.  

 Decreased muscle oxygenation may be attributable to increased oxygen demand 

and metabolic rate of the contracting muscle and increased intramuscular pressure, 

which may restrict oxygen supply via blood flow. 

 Although blood volume was not measured in the present study, it is possible that 

blood volume increases throughout exercise to provide more oxygen to the ESM as the 

demand for oxygen increases as a result of prolonged incremental exercise. Then, 

slowly recuperated its level during the recovery period(Kell and Bhambhani 2006; 

Shang, Gurley, and Yu 2013).  

 Prolonged isometric exercise time increases the time to recovery of the muscle 

during the reoxygenation period. From the onset of muscle contraction, high 
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intramuscular pressure was observed, leading to decreased oxygenation change instead. 

The subject’s time to perform the isometric exercise test needs to be considered.  

 Here, we demonstrated the incremental over time of the similar position as 

Biering-Sorensen test. During the exercise period, an average of 40% MVC was noted 

in the ESM, which is relatively in agreement with that reported by Jørgensen(Jørgensen 

1997). However, we could not conclude that more than 30% MVC indicated blood flow 

occlusion. NIRS uses a specific illumination type, but high ATT may strongly limit 

penetration and consequently influence NIRS amplitude measurements(Ferrari, 

Muthalib, and Quaresima 2011; Kankaanpää et al. 2005).  

 Furthermore, we selected subjects with similar and low ATT to minimize this 

possible limitation (Table 2-1). An emitter-photo detector spacing of 4 m was used in 

this study, guaranteeing adequate penetration of the light beam in the tissue.A limitation 

of our study would be the sample size. For small sample sizes NIRS evaluation 

standards have not been established(Kell and Bhambhani 2006). Our calculations were 

based on the availability and similarity of subject’s characteristics.  

 Human strain in response to external stress is usually a multi-dimensional 

manifestation because of variations in the physiological system. Because the present 

study assessed physiological responses during incremental over time exercise, future 

research focusing on the relationship of these responses should assess whether there are 

any inherent differences between oxygenation level change and tissue oxygenation 

index during the endurance test. Replication of our simulation in different activities, 

either in the laboratory or in the field, is important to increase the impact of this 

research. 
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 NIRS could play an important role to enhance scientific understanding of 

oxygenation level in healthy muscle as well as the incremental effects on isometric 

exercises. To combine future studies with focus on fatigue protocol and isotonic 

contraction of ESM valuable insights into muscle energetic and mechanisms could 

contribute to prevent muscle fatigue. 

2.6. Conclusion 

 In this study, we reiterated the importance of maintaining muscle oxygenation 

between tasks after static contraction of the ESM. It was shown that MF decrease as the 

oxygenation level declines during the all tasks, which should taken into account in 

future studies to understand the mechanisms of fatigue. Understanding of the time to 

recovery after exercise might help comprehend the mechanisms of work/rest to prevent 

injury. 
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Chapter 3 

The influence of oxygenation level on erector spinae muscle and fatigue 
during and after isometric contraction. 
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3.1. Introduction 

 Identifying physical limitations has long been the focal point of analysis in sport, 

exercise, rehabilitation, and ergonomics. It is crucial to identify the potential 

mechanism/sources of exhaustion to prevent musculoskeletal damage. Muscle fatigue, 

from static and repetitive tasks, is one process that can be implicated as a potential 

source of injury. The Biering-Sørensen muscle endurance test (BSME), an isometric 

back endurance test, is commonly used to measure the endurance capacity and fatigue 

of the back muscles (Biering-Sørensen, Thomsen, and Hilden 1989). Procedures for the 

test have been previously reported in subjects with and without back pain to determine 

their muscle potential (Biering-Sørensen, Thomsen, and Hilden 1989; Coorevits et al. 

2008; Kell and Bhambhani 2006, 2008) . 

 Near-infrared Spectroscopy (NIRS) was developed as a noninvasive method to 

examine muscle oxygenation and oxidative metabolism. NIRS quantifies the changes in 

hemodynamics by changes in the absorption of near-infrared light by oxyhemoglobin 

and deoxyhemoglobin. By using this technique, tissue organization can be measured in 

a discrete region in a working physiological setting, which enhances the specificity of 

the test(Buchheit and Ufland 2011; Kell and Bhambhani 2006). Several studies have 

used NIRS to examine trends in erector spinae oxygenation and blood volume during 

isometric contraction of the lumbar extensors (Albert et al. 2004; Kankaanpää et al. 

2005; Kell and Bhambhani 2008; McKeon, Albert, and Neary 2006; Shin and Kim 2007; 

Yoshitake et al. 2001). They revealed that low back muscle oxygenation decreased 

during static contraction with the intensity ranging from 2% to 80% of the maximum 

voluntary contraction (MVC) (Kell and Bhambhani 2006, 2008; Yoshitake et al. 2001). 
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 Using NIRS, Chance et al. (1992) reported that recovery time is the balance 

between oxygen supply and oxygen demand as bioenergetic resources are restored 

following an exercise interval. Recovery time can also be interpreted as a measure of 

the time required for repayment of oxygen and energy deficits accumulated during 

exercise by tissue respiration under ADP control. In relation to recovery time, Kell et al. 

(2006) demonstrated a systematic decrease in oxygenation towards the baseline in the 

initial phase of the test with values at or near baseline after about 2 minutes in the 

erector spinae muscle (ESM). Furthermore, other studies have shown a correlation 

between recovery time, work load, and lactic acidosis (Chance et al. 1992; Ding et al. 

2001; Masuda et al. 2005).  

 In assessing the effects of ESM fatigue, surface electromyography (EMG) has 

proven its utility in describing the power spectrum and amplitude changes that occur 

during volitional exhaustion exercises (van Dieën et al. 2009; T. Tsuboi et al. 1994). 

EMG power spectral analysis has indicated that muscle fatigue is associated with shifts 

in the median frequency (MF) and/or mean power frequency (MPF) towards lower 

values (De Luca 1997; H. Tsuboi et al. 2013). Additionally, EMG has well established 

that progressive decline in MF is a strong predictor of back muscle endurance(De Luca 

1997; Yoshitake et al. 2001).  

 Neuromuscular fatigue response to voluntary effort can be defined as the 

reduced ability to exert force or power, regardless of whether or not the task can be 

performed successfully (Frey-Law, Looft, and Heitsman 2012; McNeil, Murray, and 

Rice 2006). Sustained isometric contractions pose particular challenges to muscle 

perfusion because the increased demand for blood flow is opposed by increased 



59 

 

intramuscular pressure, which will limit its delivery (Dupeyron et al. 2009; Yoshitake et 

al. 2001). 

 Previous studies focused only on the exercise period and not on the recovery 

period. Furthermore, to the best of our knowledge, the relationship between BSME time 

and half-time to recovery after exercise, from a NIRS perspective, has not yet been 

investigated in vivo.  

 Therefore, the purpose of the current study was to: (1) examine the relationship 

between EMG MF and the NIRS tissue oxygenation index (TOI) during performance of 

the BSME test for the ESM, and (2) calculate the half-time to recovery (hTR) from the 

TOI after exercise.  

 We hypothesized that both EMG and NIRS can be used to examine low back 

muscle fatigue by understanding their behavior, which could lead to additional 

information for improved assessment of muscle fatigue. 

3.2. Methods 

3.2.1. Participants 

 The purpose of study and potential risks and benefits was explained to all 

participants and written informed consent was obtained from 11 healthy female college 

students who volunteered for the study. The inclusion criteria were: age between 18 and 

20; no current low-back pain; no metabolic, cardiovascular, pulmonary, or orthopedic 

disorders; BMI below 22; and skinfold thickness lateral to the L3 spinous process below 

18 mm. The protocol was approved by the Prefectural University of Hiroshima Ethical 

Committee and complied with the ethical standards of the 1975 Helsinki Declaration 
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detailing ethical principles for medical research involving human subjects. Descriptive 

information for all participants is presented in Table 1.  

Table 3-1. Physical characteristics of subjects. Values are mean (±SD). 

 

3.2.2. Subcutaneous Adipose Tissue Thickness (ATT) Measurements 

 The subcutaneous adipose tissue thickness was measured by skinfold calipers at 

the NIRS measurement site (bilaterally, 3 cm from the L3 spinous process as proposed 

by Kell et al. (2008)). Three consecutive measurements were taken and the ATT was 

defined as the mean value of the subcutaneous tissue thickness (Kankaanpää et al. 2005; 

Kell and Bhambhani 2008). The results are given in millimeters (mm) (Table 3-2). 

 

 

 

 

 

 

Variables Subjects (n = 11) p value 
Age (years) 18.8 (0.71) .938 
Height (m) 1.59 (0.01) .899 
Body mass (kg) 50.8 (4.63) .961 
BMI (kg/m²) 20.1 (1.83) .995 
BSME time (s) 155.5 (33.0) .997 
VAS 7.32 (1.7) .566 
Right-side dominant 11 -  
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Table 3-2: Mean (±SD) values of Skinfold (mm), half time to recovery (hTR), ΔTOI(%) 
and Reoxy-rate (%/s) variables with the sides compared. 

 

3.2.3. Exercise Protocol 

 The protocol was intended to be performed in two days, with each measurement 

separated by at least 48 hours. On the first day, instructions and familiarization were 

provided, and EMG maximal voluntary contraction (MVC) was measured in all subjects. 

Maximal neuromuscular activity of the trunk extensors was determined by MVC and 

evaluated following posterior analysis as proposed by Vera-Garcia, Moreside, and 

McGill (2010). On the second day, subjects performed the endurance test (i.e., the 

BSME test) until volitional exhaustion. A baseline of 2 min was measured and 

subsequently 5 min for the recovery period. All subjects performed one single static test 

(Figure 3-1).  

 

Figure 3-1. Schematic representation of experimental design. After one-minute rest and 
2 min of Baseline measurements in the prone position, subjects perform the BSME test 
(Biering-Sorensen Muscle Endurance), followed by a recovery period of 5 minutes. 
EMG data is extracted only between the BSME test periods. Near infrared spectroscopy 
(NIRS) parameters are obtained from the Baseline period. 

 

Variables n=11 
Side Right Left 
Skinfold (mm) 17.9 (1.57) 15.7 (1.85) 
hTR (s) 28.80 (8.8) 28.06 (6.9) 
ΔTOI (%) 12.18 (4.8) 12.10 (4.2) 
Reoxy-rate (%-s) 0.35 (0.1) 0.36 (0.1) 
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 To perform the BSME test, each subject lay prone on a plinth, aligning their iliac 

crest with the edge of the table. Three straps (located around the pelvis, knees, and 

ankles) were used to fix and support the lower body on the table. During the BSME test, 

the subjects were required to position their hands at the side of their head, with their 

elbows to the side and level with the trunk (Figure 3-2). They were also instructed to 

look downward at a visual fixation point (Albert et al. 2004; Coorevits et al. 2008; 

Demoulin et al. 2006; Kell and Bhambhani 2006; Moreau et al. 2001; H. Tsuboi et al. 

2013). After the recovery period, subjects were asked to rate their perceived discomfort 

using a 10 cm Visual Analog Scale (VAS). The scores ranged from 0 (no discomfort) to 

10 (greatest discomfort). The VAS is a simple and valid index to assess low back 

discomfort (Rajaee et al. 2015). 

 

Figure 3-2: Illustration of the Biering-Sorensen Muscular Endurance (BSME) test 
position with the subject strapped at the ankle, leg, and pelvic regions. 
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3.2.4. Near-infrared Spectroscopy (NIRS) 

 Using the manufacturer’s custom-designed optically dense black holder, two 

Spatially Resolved NIRS probes (NIRO-200NX, Hamamatsu Photonics, Japan) were 

placed (via double-sided adhesive tape) bilaterally at the level of the third lumbar 

vertebra over the ESM, 3 cm lateral from the spinous process (Albert et al. 2004; Kell 

and Bhambhani 2006).  

 The NIRO-200NX provides a TOI (expressed in percentage) and displays 

relative changes in oxyhemoglobin (O2Hb) and deoxyhemoglobin (HHb) (expressed in 

ΔµM). The NIRO-200NX performs calculations based on the modified Beer-Lambert 

law and spatially resolved spectroscopy parameters. Hence, the TOI value is a measure 

of dynamic balance between the distribution and consumption of oxygen (Janssens et al. 

2013).  

 To calculate ΔO2Hb and ΔHHb, the NIRO-200NX uses differences in light 

absorption characteristics at 775, 810, and 850 nm. The interoptode spacing (between 

the source and detector) was set to 4 cm. It is not possible to distinguish the relative 

contributions of hemoglobin and myoglobin because they have identical spectral 

characteristics. However, it has been reported that the major signal from NIRS comes 

from hemoglobin (Chance et al. 1992).  
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3.2.5. Calculation of Half Time to Recovery (hTR) by Tissue Oxygenation Index 

(TOI) 

 The hTR is the time it takes to reach 50% of the difference between TOI at the 

end of the contraction phase and the recovery period. All TOI parameters were analyzed 

using calculations obtained by monoexponential curve fitting (Allart et al. 2012; 

Buchheit and Ufland 2011; Chance et al. 1992; Ding et al. 2001; Motobe et al. 2004; 

Olivier et al. 2013).  

3.2.6. Surface Electromyography (EMG) 

Two wireless electrodes (WEB-7000, Nihon Kohden, Japan) were attached to the back 

3 cm lateral to the L3 spinous process over bilateral ESM, and proximate to the NIRS 

probes, without compromising any evidence. The signal was collected at a sample rate 

of 1000 Hz, and low- and high-pass filtered at 30 Hz and 500 Hz. EMG MF was 

calculated using BIMUTAS software (Kissei Comtec Co., Japan).  

3.2.7. Data and Statistical Analysis 

 All of the raw NIRS-derived responses were filtered using MATLAB Savitzky-

Golay filtering prior to analysis by a customized Microsoft Excel program. Baseline 

values were recorded during the initial test. Baseline tissue oxygenation and MF values 

were normalized to 100% to improve inter-subject comparability. 

 Data were analyzed using the statistical software SPSS version 20.0 for 

Windows (IBM Corp., Armonk, NY, USA). Data normality was verified by the 

Shapiro–Wilk test. Repeated measures analysis of variance (ANOVA) was used to 

evaluate the NIRS TOI and EMG MF values for the protocol for the right and left sides. 



65 

 

The Bonferroni test was used when significant differences were found, as well as 

interactions between the effects.  The relationship between EMG MF and NIRS TOI 

was determined using a Pearson product moment correlation analysis. Similar analyses 

were conducted to determine relationships between the BSME test time and half-time to 

recovery (hTR), as well as the ΔTOI. A significance level of p < 0.05 was adopted. Data 

are expressed in the results, tables, and graphs as mean ± standard deviation. 

3.3. Results 

 Physical characteristics and variables are summarized in Tables 1 and 2. Figure 

3-3 shows the mean value for right and left side erector spinae TOI parameters during 

baseline, BSME test, and recovery period. The exercise time scale was normalized. 

Considerable inter-individual variations were observed for NIRS responses during the 

analyzed test. A fast linear decreasing phase for the TOI was observed at the start of the 

exercise followed by a constant decreasing phase until the end of the exercise (from 100% 

to 84.8% with the right and left sides pooled). Mean BSME test time was 155.5 ± 33.0 s.  
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Figure 3-3: Mean Tissue Oxygenation index (TOI) normalized trends during the 
Baseline, BSME (%) and recovery period (seconds). A dramatic decrease of TOI at the 
start of the exercise, which leveled off at approximately 40% of the time to fatigue 
during the BSME test and remained at this level until the test was ended.  

 

 The recovery period was followed by a systematic increase in the TOI with 

values at or near baseline during the final 2 minutes. The half-time to recovery (hTR) 

was between 20 to 38 s and 22 to 32 s for the right and left sides of the assessed ESM, 

respectively.  

  The NIRS TOI for the right-sided ESM at the third lumbar vertebrae (RL) 

differed significantly between the stages of the protocol when repeated measures 

ANOVA with a Greenhouse-Geisser correction was performed (F (1.684, 16.840) = 

55.762, p < 0.0001).  Post hoc tests using the Bonferroni correction revealed that TOI 

level increased after exercise from the measure at 100% of the BSME test time to 10 s 

of the Recovery period (85.52 ± 4.93% vs. 86.40 ± 4.73%, respectively) which was 

statistically significant (p = 0.03). 
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 NIRS TOI for the left-sided ESM at the third lumbar vertebrae (LL) also differed 

significantly between the stages of the protocol when repeated measures ANOVA with 

a Greenhouse-Geisser correction were performed (F (2.278, 22.784) = 78.963, p < 

0.0001).  Post hoc tests using the Bonferroni correction revealed that TOI level 

increased after exercise from the 10 s of Recovery period to 20 s (85.58 ± 4.16% vs. 

88.57 ± 3.67%, respectively) which was statistically significant (p = 0.04) (Figure 4).  

 

Figure 3-4: Mean changes and standard deviation in EMG Media Frequency from right 
(RL3) and left (LL3) erector spinae muscle during BSME. EMG spectral variables are 
expressed as percentage of baseline value (average of first 5 s of BSME test). * p<0.05 

for significance of difference between means 

 Mean EMG MF decreased progressively to nearly 70% of the resting value on 

both sides. There was no time and side interaction, thus the data from the left and right 

sides were pooled for subsequent correlation analysis. A positive strong correlation was 

found between BSME time and hTR, as well as ΔTOI when the values of the two sides 

were pooled. The correlation coefficient for ΔMF values and BSME time indicated low 

to moderate correlation (Table 3-3).  
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Table 3-3: Pearson’s correlation coefficient between BSME time and half-time to 
recovery (hTR), change level of tissue oxygenation index (ΔTOI), and change level of 
median frequency (ΔMF) variables with right and left side pooled. 

 

Table 3-4 shows the correlation matrix between TOI and MF over the period of muscle 

contraction. There was a strong positive correlation between mean TOI RL and MF RL 

(r = 0.78, p < 0.05), and between TOI LL and MF LL (r = 0.90, p < 0.05). 

 

Table 3-4: Correlation coefficient between TOI and MF during the BSME test. 
*Correlation is significant at the 0.05 level 

 

 

 

 

 

 

 

 

 

Variables n=11 p value 
hTR 0.845 0.001 

ΔTOI 0.894 0.001 
ΔMF 0.593 0.055 

 
TOI RL TOI LL 

MF RL3 .781* - 
MF LL3 - .905* 
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3.4. Discussion 

 In the present study, we used the NIRS TOI to measure erector spinae muscle 

oxygenation simultaneously with EMG MF measurements during BSME, as well as the 

half-time to recovery after the BSME test. The main findings suggested that the 

relationship between EMG and NIRS is somehow related to the time of muscle 

contraction as reported by the Chapter 2. Despite of these above described findings, it 

was obvious to find in this study the time of hTR were much more longer than the 

previous protocol. We could not find the relationship of fatigue process, whether it 

starts and where it ends. For EMG, the MF starts declining it values as the muscle 

isometric contraction begins. However, it was observed that after 40% of time to 

exhaustion, the TOI trend remained fairly consistent and showed a plateau until the end 

of the exercise. As for NIRS, the lowest value of its oxygenation could indicate the 

muscle could not maintain the contraction and lacking of oxygenation, the muscle starts 

fatiguing. 

 NIRS TOI and EMG MF decreased progressively as a function of time during 

the BSME test. This trend is in agreement with previous studies (Coorevits et al. 2008; 

van Dieën et al. 2009). Moderate to strong correlation between TOI and MF was 

demonstrated (r = 0.78 and r = 0.90, for the right and left sided ESM respectively). 

Albert et al. (2004) suggested a low to moderate correlation between NIRS and EMG, 

but in their study, muscle oxygenation values were presented in optical density units, 

which only describe the oxygen concentration change. Therefore, in our study, NIRS 

TOI (ratio of HbO2/ (HbO2+HHb)) was given. It was possible to obtain this by using a 

spatially resolved spectroscopy system. 
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 With this system, it was also possible to measure the Reoxygenation rate (i.e., 

Reoxy rate). The Reoxy rate reflects the change in post-exercise muscle oxygenation 

levels over time. It has been reported to be a good marker of aerobic muscle function. 

According to McCully (1994), the Reoxy rate has been shown to have similar recovery 

kinetics to phosphocreatine (PCr) resynthesis after exercise. It may be possible that a 

faster Reoxy rate is indicative of an improved ability to supply oxygen at a higher rate 

during the post-exercise period. Future studies focusing on the relationship of these 

responses should assess whether there are any inherent differences between the Reoxy 

rate and the burden related to different types of exercises, which would suggest that this 

index of oxygen demand and delivery is a marker of aerobic resaturation after exercise 

(Chance et al. 1992). 

3.4.1. NIRS Parameters 

 We calculated  hTR of 28.33 ± 9.5 seconds and 28.06 ± 6.9 seconds for the right 

and left ESM, respectively by NIRS tissue oxygenation index. Kell et al. (2008), 

reported a value of 51.17 (29.8) seconds and 58.42 (37.1) seconds for right and left 

ESM recovery time, respectively, after the BSME test. Although they utilized similar 

equipment, in their study, muscle oxygenation was calculated as the difference between 

the concentration change of oxyhemoglobin and deoxyhemoglobin.  

 In accordance with Albert et al. (2004), the TOI for the ESM demonstrated a 

rapid decrease at the onset of the BSME test, with a more gradual decrease during the 

middle and later stages. The average ESM response reflected continued utilization of 

oxygen as illustrated by the decline in oxygen saturation by greater than 10% 

throughout the test, in order to provide sufficient energy to perform the protocol. These 
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findings are consistent with previous findings, and can be explained by increased 

cellular oxygen uptake in the mitochondria due to the increased metabolism of the 

working motor units, or increased intramuscular pressure (Albert et al., 2004; Yoshitake 

et al., 2001). The duration of this decline seems parallel with the use of phosphocreatine 

(PC) as an energy source for muscle contraction (Fulford et al. 2014). The energy 

source during the final phase of the contraction is likely supplied by glycogen in 

anaerobic glycolysis due to the deficit in oxygen caused by the mechanical obstruction 

of blood flow to the muscle.  

3.4.2. EMG parameters 

 The electrode locations were selected to incorporate the activity of the multifidus, 

iliocostalis, and longissimus muscles, although it is questionable whether the signal 

from each underlying muscle was picked up at any of the sites. 

 The estimated value of the conduction velocity affects the frequency scaling of 

the spectrum and consequently, the value of the spectral parameters (De Luca 1997). A 

decrease in conduction velocity is thought to be caused by an increased concentration of 

extracellular potassium and metabolic acidosis. Cumulative fatigue develops as 

isometric contraction time increases, as was observed in this study (Kell and Bhambhani 

2006). For bilateral ESM, the MF started to decrease from the moment the muscle 

contraction was initiated until the end of contraction. This is in line with findings from 

Tsuboi et al. (1994); the downward trend in MF is related to an increase in endurance, 

suggesting that smaller muscle fibers were recruited at high contraction forces. Mannion 

et al. (2000) suggested a predominance of type I over the II fibers in the ESM of women.  
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 As such, greater oxidative potential and decreased production of metabolic 

byproducts would result in a slower decline of the EMG MF. No significant difference 

was found on the right side, which might be explained by the fact that all study subjects 

had a dominant right side. Nicolaisen and Jorgensen (1985) suggested that the force of 

the muscle contraction needs to be higher than approximately 50% of the MVC for 

blood flow to be occluded. During the BSME test, a 40% MVC was recorded. Therefore, 

we could not assume blood flow occlusion. 

3.4.3. Muscle Fatigue Responses 

 Yoshitake et al. (2001) has examined the oxygenation responses of the ESM 

during static contraction in order to fundamentally understand the fatigability process of 

the ESM with NIRS. They assumed that the restriction of blood flow due to high 

intramuscular mechanical pressure was one of the most important factors underlying 

low back muscle fatigue. Fatigue during static contraction has been attributed to 

increased intramuscular pressure (van Dieën et al. 2009; Yoshitake et al. 2001). 

 Gerr et al. (2002), demonstrated a link between musculoskeletal symptoms and 

disorders and occupational ergonomic exposures, such as sustained static muscle 

contraction, highly repetitive movements, and insufficient recovery time. According to 

Chance et al. (1992) the hTR is related to a reduction in oxygen concentration and high-

energy phosphoric acid level in the muscles. Thus, it is a comprehensive representation 

of intramuscular capillary density, myoglobin concentration, size and density of 

mitochondria oxidative enzyme activities, and oxygen transport capacity, and it serves 

as an index for the oxygen-retaining capacity of muscles. Therefore, in our study, hTR 
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was used to represent the compromised oxygen-retaining capacity in the ESM during 

the isometric endurance test. 

 Intramuscular pressure is positively related to contraction intensity(Dupeyron et 

al. 2009; Kimura et al. 2006). Thus, it is held that there is a critical force threshold 

beyond which mechanical pressure occluding muscle blood flow and below which flow 

will be affected to varying degrees depending on the contraction intensity and 

anatomical location (Yoshitake et al. 2001). 

 Metabolic factors may be the primary determinant of muscle fatigue in these 

situations, whereas in low intensity exercise, electrophysiological processes appear to 

be the limiting factor. Recovery of metabolic supplies is dependent on circulation. 

Therefore, it can take considerable time for full recuperation of the rest values.  

3.4.4. BSME Responses 

 The BSME test times were moderately variable and ranged between 117.5 and 

194.7 s (148.5 ± 26.0 s). These values are slightly lower than has been reported by 

Albert et al. (2004), but they are within the ranges reported by others (Dupeyron et al. 

2009; Kell and Bhambhani 2006). 

3.4.5. Limitations 

 It should be noted that the sample size presented in this study could have played 

a prominent role in the lack of detectable differences in physiological responses. 

However, since sample-size calculations for NIRS-specific investigations have not yet 

been established  (Kell and Bhambhani 2006), the calculations in our investigation were 

performed according to subject availability and similarity. The examination of muscle 
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oxygenation allowed us to speculate on perfusion, NIRS itself does not approach the 

precision of Doppler ultrasound or PET, which can show the distribution of blood in a 

muscle during a sustained isometric contraction (Gurley, Shang, and Yu 2012). 

3.5. Conclusion 

 The findings of this study have implications for future investigations on the 

mechanism of action of the low back muscles. A reduction in the strength (i.e., EMG), 

endurance, and oxygenation levels (i.e., NIRS) of the low back muscles has been 

implicated as a contributory factor to fatigue. Adequate blood supply is obviously the 

most essential component to withstand fatigue and prevent the loss of lumbar muscle 

function. Furthermore, prolonged static posture might diminish oxygenation level and 

MF, increasing susceptibility to fatigue. 
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Chapter 4 

Recovery Time Analysis and Kinematic Load after Patient-handling 
Simulated Task from Caregiver’s Low Back Muscle 
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4.1 Introduction 

 The aging of the Japanese population is thought to exceed that of all other 

nations, with the country purported to have the highest proportion of elderly citizens. 

According to the statistics of the Japanese Health, Labor, and Welfare Ministry, the 

proportion of the elderly (65 years or older) reached 20.8% in the fiscal year 2006, and 

is estimated to increase to 39.6% in 2050. This has induced various health issues among 

caregivers in nursing homes. The occupational condition is related to the requirement 

for the caregivers to repeatedly perform activities such as lifting the patients from and to 

anomalous postures. Patient transfer has been found to be associated with most low 

back injuries suffered by caregivers(Russell et al. 2007; Schibye et al. 2003; Skotte et al. 

2002). Additionally, nurses and caregivers exhibit high rates of low back pain (LBP) 

and worker compensation claims for back injuries(Daynard et al. 2001). In the year 

2011, the total annual medical cost of work-related LBP was estimated to be 82.14 

billion yen(Itoh, Kitamura, and Yokoyama 2013). It is thus reasonable to suppress an 

increase of this medical cost by suppressing the occurrence of work-related LBP in the 

country. A recent systematic review particularly reiterated the prevalence and high risk 

of work-related LBP in patient-handling and nursing occupations(Yassi and Lockhart 

2013). 

 Although knowledge has been gained about the possible causes of work-related 

LBP, little progress has apparently been made in preventing this critical work-related 

complaint. Identification and preventive procedures related to musculoskeletal disorders 

(MSDs) have been the major focus of the 12th Occupational Safety and Health Program 

(Ministry of Health, Labour and Welfare, Japan, 2013).  
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 Near-infrared spectroscopy (NIRS) affords a noninvasive and continuous means 

of monitoring the relative concentration changes of the oxygenated and deoxygenated 

forms of hemoglobin (Oxy-Hb and Deoxy-Hb, respectively) in muscles of interest(Ryan 

et al. 2012). Studies have shown correlations among recovery time, work load, and 

lactic acidosis(Chance et al. 1992b; Ding et al. 2001a; Masuda et al. 2005). Low back 

muscle oxygenation has also been measured by NIRS using different methods and 

loads(Dupeyron et al. 2009; Masuda, Miyamoto, and Shimizu 2006; Shin and Kim 

2007). NIRS measures during isometric ESM activities have exhibited a moderate to 

strong intraclass correlation coefficient (ICC) of 0.69–0.84 (Kell, Farag, and 

Bhambhani 2004). It is, however, not known how the intensity of a patient-handling 

movement might affect the oxygenation measures. Nevertheless, knowledge of the 

reliability level of such measures is critical to interpreting the differences among their 

magnitudes for different types of movements and possible training-induced changes to 

prevent muscle fatigue. 

 Another approach that has been explored for the determination of joint contact 

forces involves numerical calculation using free body segments and inverse dynamics 

(Figure 4-1). However, the hemodynamics approach to investigating muscle 

activity(Katsuhira et al. 2008) is yet to be applied to the study of patient transfer tasks. 

Many of the modelling methods that have been used to estimate low back load and 

establish guidelines for the maximum allowable loads in the healthcare industry have 

been reasonably successful for demonstrating the effects of the body posture on overall 

spine load indexes such as low back compression. However, while such methods may 

be useful for addressing the most overt violations of biomechanical principles to reduce 

the risk of injury in the healthcare industry, they do not elucidate how the spine 
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functions, do not identify individual differences that cause certain people to be 

predisposed to injury, and do not address the many subtle mechanical characteristics of 

the spine that are important to the consideration of injuries (Stuart M. McGill, 2007).  

 

Figure 4-1: Complete free-body diagram (ankle, knee, hip and trunk), showing reaction 
force (f), net moment of force (μ), and all linear and angular accelerations. 
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 Biomechanical modelling techniques for determining tissue loads from the 

structural architecture of the human body are effective for analyzing injury mechanisms, 

assessing injury risks, and developing injury avoidance strategies (Stuart M McGill, 

2007). Hence, the mechanisms that are used to understand the overuse of the back 

muscle can be employed in evaluating physical performance through estimation of the 

joint moments and monitoring of the oxygenation level and subsequent recovery time. 

NIRS and 3D Movement Analysis System 

 When moving patients during care activities, caregivers frequently adopt 

postures asymmetrical to the median sagittal plane, including lateral bending and 

turning the trunk, and laterally positioned arms including sideward force exertion. 

Furthermore, they exert lifting, pulling, and pushing forces varying over time respect to 

amplitude and direction (Koppelaar et al. 2012). Therefore, a three-dimensional (3D) 

determination and replication of both, the posture and the action forces in high temporal 

resolution, are needed for and adequate approach for quantifying biomechanical 

indicators of load on the lumbar spine (Clemes, Haslam, and Haslam 2010; Daynard et 

al. 2001; Theilmeier et al. 2010). In addition, repetitive lifting during manual handling 

task has been associated with muscle fatigue. However, the biomechanical mechanism 

linking muscle fatigue and back injury development has not been fully investigated.  

 Although there is evidence of the reliability use of 3D motion capture and NIRS, 

until this date no research has assessed whether objective measurements of both 

methods when using together. 

 The aim of the current research is to understand the physiological and 

biomechanical changes associate with patient-handling task. Specially, consecutive 
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movement is hypothesized to: (1) decrease tissue oxygenation; (2) increase L3/L4 joint 

moment; (3) increase biomechanical loading of the spine; (4) increase time of 

reoxygenation level.  

4.2. Methods 

4.2.1 Participants 

 Informed written consent to the purpose of the study and its potential risk and 

benefits was obtained from each of the 11 healthy female participants, who were college 

students. The ages of the participants ranged between 18 and 20 years. None of them 

experienced LBP or any metabolic, cardiovascular, pulmonary, or orthopedic disorder at 

the time of the study. The BMIs of the participants were all below 25. In addition, the 

skinfold thickness lateral to the L3 spinous process of each participant was less than 18 

mm. A mannequin (Sakamoto Model Co, Japan) (weight = 16 kg, height = 160 cm) was 

used as the patient. A mannequin was used to avoid the interference of a human 

simulated patient; hence, only the movement of the caregiver needed to be measured 

(Westhoff, 2004). The experimental protocol was approved by the Prefectural 

University of Hiroshima Ethical Committee, and complied with the 1975 Helsinki 

Declaration regarding ethical principles for medical research involving human subjects. 
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4.2.2. Experimental Protocol 

 The study subjects were required to perform two distinct transfer tasks: 1) 

Elevation of the patient from a supine position in bed to a sitting position (SS), and 2) 

Transferring of the patient from sitting on the bed to sitting in a wheelchair (SW). An 

additional third task, namely, continuous performance of SS and SW (SS+SW) was also 

performed (Figure 4-2). No instructions were given to the subjects prior to performing 

the tasks, but they were told to handle the mannequin with care and use a normal pace 

(Figure 4-3 to 4-5). 

 

 

Figure 4-2: Schematic representation of the experimental design. After a 1-min rest and 
2 min of baseline, the subjects performed the transfer assistance task, and this was 
followed by a recovery period of 2 min. Another 15 min of rest was allowed between 
trials.  The motion capture data were only extracted during the performance of the tasks. 
The near-infrared spectroscopy (NIRS) parameters were obtained from the beginning of 
the baseline period to the end of the recovery period. 
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Figure 4-3: A patient handling task in which the subject is elevating the mannequin 
from supine position in bed to a sitting position (SS). 

 

Figure 4-4: A patient handling task in which the subject transfer the mannequin from 
sitting on the bed to wheelchair (SW). 

 

Figure 4-5: A patient handling task in which the subject elevate the mannequin from a 
supine position on the bed to sitting in a wheelchair (SS+SW). 
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4.2.3. Experimental Setup 

 A 3D motion analysis system that included 12 infrared cameras (VICON MX: 

Vicon Motion System; Oxford, UK) and two force plates (AMTI; Watertown, MA, 

USA) were used to record the kinematic and kinetic data at a sample frequency of 100 

Hz (Figure 4.6). The recorded data were low-pass-filtered by a fourth order recursive 

Butterworth filter with a cut-off frequency of 6 Hz. A total of 29 reflective makers were 

attached to the following landmarks on the subjects: front and back of the mid-temporal 

points, bilateral of the shoulder, lateral epicondyle, ulnar styloid process, acetabulum, 

anterior-superior iliac spine, iliac crest, knee, ankle, and fifth metatarsal. Additional 

markers were placed at the L3/L4 lumbar level and both sides of the trochanter. The 

transfer tasks were performed using a bed and wheelchair seat of the same height of 40 

cm from the floor. The angle between the bed and wheelchair during the SW and 

SS+SW was 45°. 
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Figure 4-6: A schematic example of typical motion capture setup (Vicon cameras, MX 
Ultranet Hd, PC and force plate) 
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4.2.4. Calculation of L3/L4 Joint Moment 

 Downward 3D inverse dynamics was used to determine the L3/L4 net joint 

moments. The computational details are available in a previous publication(Winter 

2005). An expanded equation of motion was used to calculate the joint moment, starting 

from the ankle joints, and then the knee and hip joints. The forces and moments of the 

L3/L4 joint, hip joints, knee joints, and ankle joints were estimated using the kinematic 

and inertial properties of the body, together with the process of inverse dynamics and 

the developed free body diagram (FBD) for motion analysis, based on the kinetics of the 

lower limb muscles and bone joints.  

 The entire trunk was modeled as a single rigid segment connected to the pelvic 

segment through the L3/L4 joint. Data on the masses, centers of mass, and moments of 

inertia of the segments were obtained from Winter (2005)(Winter 2005). The peak joint 

moment at the L3/L4 joint during the central part of each task was used as the 

characteristic variable(Skotte et al. 2002). The point between the third and fourth 

lumbar vertebrae was defined as the center of rotation of the low back joint in this study. 

The position of the actual marker was interpolated to the center point of the vertebral 

body, using the length between the surface of the skin and the center of the vertebral 

body determined by MRI imaging, as described by Katsuhira et al. (2007). Five selected 

subjects were used for this purpose (mean age = 19.57±0.49 years, mean height = 

1.56±0.03 m, mean weight = 46.95±2.45 kg. The determined mean length, 85.14±2.33 

mm, was used for the interpolation. 
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4.2.5. Near-infrared Spectroscopy (NIRS) 

 Two spatially resolved NIRS probes (NIRO-200NX, Hamamatsu Photonics, 

Japan) were attached to a subject using a double-adhesive tape and the manufacturer’s 

custom-designed optically dense black holder, at the level of the third lumbar vertebra 

over the right and left erector spinae muscle, 3 cm from the spinous process(Albert et al. 

2004; Kell and Bhambhani 2006). The intereptode spacing between the emitter and the 

detector was 4 cm. The NIRO-200NX probes were used to determine the tissue 

oxygenation index (TOI) (percentage) and the relative changes in the oxyhemoglobin 

and deoxyhemoglobin (ΔµM). To improve intersubject comparability, the TOI values 

were determined relative to the baseline. The NIRS signals during all the processes were 

acquired at a sampling frequency of 20 Hz, and the data were storage on an SD card 

before analysis by a PC. MATLAB Savitzky-Golay filtering (Mathworks, 

Massachusetts, USA) was implemented on the data before analysis using a customized 

Microsoft Excel software program (Microsoft Corporation, Redmond, Washington). 

4.2.6. Half Time to Recovery Measured by NIRS 

 The half-time to recovery (hTR) was calculated by monoexponential curve 

fitting as the time taken to reach 50% of the post-exercise maximal value(Allart et al. 

2012; Buchheit and Ufland 2011; Chance et al. 1992a; Ding et al. 2001b; Motobe et al. 

2004; Olivier et al. 2013). 
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4.3. Data Analysis 

 All the recorded VICON data, after filtration, were analyzed in the Windows 

Excel environment. The motion phase was extracted and scaled to 100% of the relative 

time. Data for three trials of each task by each subject were collected. The median peak 

value for the three trials and the closest value were averaged to obtain the representative 

value of a particular data type for the analysis. The peak L3/L4 joint moment was 

normalized by the height and weight of the subject, as described by Kerrigan 

(1998)(Kerrigan et al. 1998). The reproducibility of the L3/L4 joint moment about three 

axes was analyzed to compute the ICC using a two-factor mixed effect model and the 

type consistency. After testing the normality of the distribution of the residuals through 

a Shapiro-Wilk test and visual inspection of their histograms, a repeated measures 

analysis of variance (ANOVA) was performed using the three tasks as the fixed factors. 

A Tukey post-hoc test was also performed when significant differences were observed. 

Values of p < 0.05 were considered to be statistically significant. The data on the task 

duration and lift height were also analyzed. The lift height was calculated as the 

difference between the maximum heights of the marker placed on the head of the 

mannequin. The analysis was done using the statistical software SPSS Version 20.0 for 

Windows (IBM Corp., Armonk, NY, USA). 

 

 

 

 



88 

 

4.4. Results 

 The physical characteristics of the subjects are summarized in Table 4-1. 

 

4.4.1. Test of Reliability and Normality 

 A moderate-to-low degree of reliability was observed in the L3/L4 joint moment 

measurements on the torsional plane during SS+SW. The single-measure ICC was 0.68 

with a 95% confidence interval of 0.16–0.90. The mean trial variation was 0.01±0.01. 

Conversely, a high degree of reliability was observed along the lateral axis with an ICC 

of 0.94 and a 95% confidence interval of 0.81–0.99. The mean trial variation was 

0.01±0.02 (Table 4-2). Through normality testing and visual histogram inspection, the 

normal Q-Q plots of the box plots showed that the TOI were approximately normally 

distributed for the two separate tasks. The following were determined: a skewness of -

0.195 (SE = 0.427) and kurtosis of -0.942 (SE = 0.833) for the SS; a skewness of -0.283 

(SE = 0.427) and kurtosis of -0.943 (SE = 0.833) for the SW; and a skewness of -0.586 

Table 4-1. Physical characteristics of the subjects.  

Variable Subjects (n = 11) p value 

Age (years) 18.8(0.71) .938 

Left skinfold (mm) 15.7(1.85) .952 

Right skinfold (mm) 17.9(1.57) .652 

Height (m) 1.59(0.01) .899 

Body mass (kg) 50.8(4.63) .961 

BMI (kg/m²) 20.1(1.83) .995 

Right side dominant 11   

 Values are mean (±SD) 
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(SE = 0.464 and kurtosis of -0.702 (SE = 0.902) for the SS+SW. With regard to the 

peak moment of the L3/L4 joint, approximately normal distributions were observed for 

only SW and SS+SW. 

  

 The peak extension moment for each of the three tasks was determined, with that 

for SS observed to be slightly smaller than those for SW and SS+SW. The mean peak 

L3/L4 joint moments in the three directions during the different tasks are presented in 

Table 4-3. 

 

 

Table 4-2. Lateral, torsional and extension intra-class correlation coefficient (ICCs) for 
subsequent tasks. 

Axis Tasks ICC 
95% Confidence interval 

Mean variance 
Lower bound Upper bound 

A) Lateral 

1. SS 0.88* 0.6 0.96 0.05 ± 0.13 

2. SW 0.92* 0.74 0.97 0.03 ± 0.1 

3. SS + SW 0.86* 0.58 0.96 0.00 ± 0.12 

B) Torsional 

1. SS 0.82* 0.48 0.95 0.00 ± 0.02 

2. SW 0.86* 0.58 0.96 0.00 ± 0.01 

3. SS + SW 0.68* 0.16 0.9 0.01 ± 0.01 

C) Sagittal 

1. SS 0.70* 0.22 0.91 0.01 ± 0.02 

2. SW 0.84* 0.5 0.95 0.00 ± 0.02 

3. SS + SW 0.94* 0.81 0.99 0.01 ± 0.02 
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Figure 4-7. Difference between Peak L3/L4 joint moments (Nm x BW x BH) and 
standard deviations during patient-handling tasks (SS: supine-to-sitting; SW: sitting-to-
wheelchair; SS+SW: supine-to-wheelchair) calculated in three directions of force 
(Sagittal, Torsional and Lateral). 
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* Significantly difference between tasks (p<0.05). 

 

 

 

 

 

Table 4-3. Peak L3/L4 joint moments and standard deviations for the different patient-handling 
tasks 

  
Extension moment 
(Nm / BW x BH) 

Lateral moment 
(Nm / BW x BH) 

Torsion moment  
(Nm / BW x BH) 

1. Supine to sitting 
(SS) 2.40 ± 0.27* 0.11 ± 0.04 0.13 ± 0.03 

2. Sitting to wheelchair 
(SW) 2.25 ± 0.23* 0.08 ± 0.03* 0.10 ± 0.02* 

3. Supine to wheelchair 

SS + SW 
2.57 ± 0.22* 0.14 ± 0.08* 0.14 ± 0.02* 
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Figure 4-8: Pearson’s correlation coefficient between TOI and L3/L4 peak moment 
during SS: supine-to-sitting; SW: sitting-to-wheelchair; SS+SW: supine-to-wheelchair. 
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Figure 4-9: Single representative data for lumbar Tissue Oxygenation Index (TOI) of a 
caregiver during and after each task. SS: supine-to-sitting; SW: sitting-to-wheelchair; 
SS+SW: supine-to-wheelchair. 
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 The bending angle of the trunk increased when the subject moved close to the 

patient, and further increased when the patient was lowered after being lifted (Table 4-

4). There were statistically significant differences among the tasks with regard to this 

parameter as determined by a one-way ANOVA (F(2,96) = 19.312, p < 0.01). The 

Tukey post-hoc test revealed that the average angles in degrees for SS (44.07±8.40°, p < 

0.01) and SS+SW (44.51±6.76°, p < 0.01) were statistically significantly higher than 

that for SW (34.51±6.88°). There was no statistically significant difference with regard 

to this parameter between SW and SS+SW (p = 0.968). 

Table 4-4. Overview of the averaged maximum trunk forward-bend angle (degrees), 
maximum mannequin lift height (m), and average time length (s) for the different patient-
handling tasks. 

Tasks Δ Trunk forward bend 
angle (°) 

Mannequin lift 
height (m) 

Time 
length (s) 

1. Supine to sitting 
 (SS) 44.08 ± 14.31* 0.68 ± 0.03 34.19 ± 13.97 

2. Sitting to wheelchair 
(SW) 34.51 ± 6.22 0.36 ± 0.05 25.62 ± 7.37 

3. SS + SW 44.52 ± 5.92* 0.90 ± 0.05 47.43 ± 14.97 

 * Significantly difference between tasks (p<0.05). 

 Single representative data for lumbar Tissue Oxygenation Index (TOI) of a 

caregiver during and after tasks are shown on Fig. 4.8. Pearson’s correlation coefficient 

between TOI and L3/L4 peak moment during SS, SW, SS+SW patient handling tasks 

(Figure 4.7). A two-way ANOVA was conducted to examine the effects of the hTR and 

the three different tasks. No statistically significant interaction was observed (F(2,192) 

= 0.525, p = 0.59). However, a simple main effect analysis showed that the hTR for 
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SS+SW was significantly higher than those for SS and SW (p < 0.05), but there were no 

differences between the right and left lumbar during SS and SW (Figure 4-9). 

 

 

Figure 4.10: Box plot of half-time to recovery (hTR) ordered by medians of R (right) 
and L (left) lumbar and three different tasks (SS: Supine-to-sitting; SW: Sitting-to-
wheelchair, SS+SW: Supine-to-wheelchair). Whiskers indicating lower and higher 
measurements. 
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4.5. Discussion 

 The objective has not been consider the effectiveness of the technical aids for 

disabled use. The present study main purpose was to estimate the L3/L4 joint moments 

and the hemodynamic effects of the ESMs during the simulation of patient-handling. 

For use as references, the moments were measured using data obtained by motion 

capture and force plates. The tissue oxygenation indexes were also determined by NIRS. 

Because the net forces of the L3/L4 joint moments could not be directly measured, the 

forces and moments at the hip joints, knee joints, and ankle joints were estimated based 

on the kinematics and inertial properties using the inverse dynamic process and a 

developed free body diagram for motion analysis. Although the forces acting at the 

distal end of a segment, the weight of the segment, and the kinematics of the segment 

can be typically determined by direct measurement, the forces and moments at the 

proximal end must be calculated using the equations of motion and the known quantities.  

 To determine the unknown forces at the ankle, knee, and hip joints, the lower 

extremity was sectioned into three parts (the thighs, legs, and feet) to determine their 

interactions. The L3/L4 joint moment was finally calculated. In agreement with the 

finding of Skotte et al. (2002), the present data indicated that the low back joint 

extension moment was larger than the lateral and torsional moments. However, the peak 

mean value of 1.73±0.44 Nm/kg in the previous study is smaller than the present value 

of 3.77±0.56 Nm/kg. The reason for the difference may be the differing levels of the 

joints and differing moments of arm assessed. The L3/L4 joint was considered in the 

present study, compared to the L4/L5 joint in the previous study. The present results 

indicated significant differences among the three tasks, with the extension moment for 
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SS+SW being larger than those for SS and SW. This may be due to the differing time 

lengths of the different tasks and the angular accelerations of the subjects. It is 

unsurprising that the moments were affected by the weight of the trunk when the 

external load was relatively small.  

 Although the biomechanical parameters of the present study indicated task 

dependency, it must be noted that the situations of the patient-handling tasks differed. 

The individual characteristics of the subjects are also crucial to understanding the 

differences and achieving more consisted results.  

 Skotte et al. (2002) reported that the low back extension moment was largest 

among the rotations about all the axes during the lifting of a patient from sitting on a 

bed to standing on the floor. This is in good agreement with the present finding. 

However, the mean peak value of 184±42 Nm observed in this previous study is slightly 

higher than the 179.6±26.6 Nm of the present study.  

 A simulated stroke patient was used in the previous study, whereas a mannequin 

of weight 16 kg was employed in the present one. The discrepancies between the study 

results were thus likely caused by the differing subjects and methods. The maximum 

trunk flexion angle of 47.7±13.8° determined for SW in the present study was different 

from a previously published value of 34.5±6.2°. This may be attributed to the differing 

heights and angles of and between the bed and the wheelchair, respectively, in the two 

studies(Katsuhira et al. 2008).  

 The lift height for SS+SW was higher than those for the other tasks. Varady et al. 

(2015) observed a steady decrease in the maximum lift height with increasing load. 

However, in the present study, the mannequin load was constant at 16 kg. There is 
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widespread concern about the recognized tissue damage that results from repeatedly 

handling heavy loads.  

 The important questions remains whether the reduction in mechanical load 

during patient handling activities will be sufficient to prevent the occurrence of low 

back pain. It has to be considered that the occurrence of low back pain is not always 

work-related. The etiology of back complaints is multifactorial and epidemiological 

surveys have identified various individual, psychosocial, and physical risk factors. The 

occurrence of low back pain can, therefore, not entirely be prevented by the 

appropriated time to rest. Given the fact that consecutive task in this study was 

associated to higher time to recovery, a lower recovery time may be certainly be 

expected to lead to a substantial reduction in the occurrence of low back. 

4.5.1. Factors Affecting Recovery Time 

 According to Chance (1992), the recovery time is determined by the balance 

between oxygen supply and oxygen demand during the recovery changes after an 

exercise, when the bioenergetic resources are restored. It is the time required for the 

resynthesis of phosphocreatine (PCr), and in some cases, adenosine triphosphate 

(ATP)(Hamaoka et al. 2011).  

 The TOI hTR of the bilateral ESMs was measured for the three tasks of the 

present study. No statistical difference was found between the hTRs of the left and right 

sides of the ESMs. It was, however, observed that the hTR after SS+SW was 

significantly longer than those after SS and SW. This was because SS+SW involved the 

consecutive performance of SS and SW. Masuda et al. (2006)(Masuda, Miyamoto, and 

Shimizu 2006) found that the oxygenation level was significantly decreased during 
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forward bending, especially when handling loads. This explains why the trunk flexion 

angles for SS and SS+SW were higher than that for SW. Additionally, the lowest TOI 

corresponded to SS+SW. However, a lower TOI may not only be due to the type of task, 

but also to the efficiency of performing the task.  

 Further investigation is required to better understand the mechanism of the 

change in the oxygenation level and the relationship between the efficiency and the 

training and expertise of the handler. In occupations such as those involving the transfer 

of patients, the posture of the worker has been implicated in the cause of health 

complaints (Freiberg et al. 2015). In our previous study, static movement of the ESM 

tend to produce fatigue according to the time of exposed.  

 The findings of the present study reiterate the importance of maintaining muscle 

oxygenation between tasks after static contraction of the erector spinae muscle. (Gerr et 

al. 2002) also demonstrated a link between musculoskeletal symptoms/disorders and 

occupational ergonomic exposures such as sustained static muscle contraction, highly 

repetitive movements, and insufficient recovery time. Decreased muscle oxygenation 

may be attributed to increased oxygen demand and metabolic rate of a contracting 

muscle and increased intramuscular pressure, which may restrict oxygen supply via 

blood flow.  

 Masuda et al (2005), reported tissue blood volume and its oxygenation were 

decreased significantly during forward bending, lateral bending, and loading tasks. In 

the other hand, stretched muscles had less blood volume and oxygenation, and they 

decreased with increasing load. Their results showed that these postures and conditions 

might lead to fatigue of ESM muscles. Therefore, proper patient-handling techniques 
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must thus be accurately used to prevent both caregivers and patients from being fatigue 

and injured.  Some studies related to patient-handling techniques have recommended 

that caregivers should plan in advance the activities for performing their tasks. In the 

present study, we found that the hTR for SS+SW was longer than those for SS and SW. 

SS+SW thus required a longer time for the hemodynamic recovery of the muscle. To 

achieve quick recovery, the task should be planned in such a manner that the patient is 

handled through subroutines rather than through the execution of an entire technique in 

one continuous process. 

4.5.2. Limitations 

 The model described in this paper and the study as a whole have some 

limitations that need to be addressed. Firstly, the model is based on the assumption of 

general and frictionless joints, fixed segment lengths, and fixed centers of mass. The 

effects of friction and joint structures were thus not considered in the analysis of the 

reaction forces between the subject and the mannequin. Secondly, the number of 

participants of the study is questionable. Because specific procedures for sample-size 

calculations for NIRS investigations are yet to be established, the present calculations 

were performed based on the availability and similarities of the participants.  

 The question therefore arises as to whether the findings based on a university 

population are globally applicable. The generalization of laboratory findings to the real 

world is a challenging issue, especially considering the considerable adaptability of 

experienced workers in physical tasks. In this context, because the present study only 

assessed the physiological responses of the selected age group of women participants 

during simulated patient-handling tasks, only approximate guidelines can be developed 
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from the observations for actual performance of the tasks with varying intensity levels, 

loads, and time durations.  

 The replication of the present findings for different activities, both in the 

laboratory and on the field, is also important to enhancing their practical relevance. 

Future work to address the above issues would require the adoption of numerous factors 

and considerations. It is noteworthy that the present model also neglected the 

compression reducing effects of intra-abdominal pressure, upper limb joint moments, 

and extensor ligamentous structures. This had an effect on the obtained results. 

Nevertheless, the L3/L4 joint moment data are comparable or slightly lower than those 

of most previous studies that employed similar tasks. In addition, as in many previous 

studies, a mannequin was used instead of a real patient or a healthy person.  

 The mannequin was used in the present study to ensure constancy of the load 

borne by the subjects (caregivers) only, during all tasks movements. Furthermore, 

although the markers were attached to the bodies of the subjects to best represent the 

joint center, anatomical constraints inevitably caused small errors. For example, the 

markers of the ankle joints were placed on the lateral malleolus. However, the 

articulation of the tibial/talus surfaces is such that the distal end of the tibia (and the 

fibula) moves in a small arc over the talus. The true axis of rotation is actually a few 

centimeters distal of the lateral malleolus. The feet of a subject were also not arbitrarily 

fixed on the force plate to measure the reaction force during the tasks. This might have 

decreased the rotation (lateral and torsional moment) of the lumbar region to 

compensate for the restricted movement ranges while executing the tasks. No single 

intervention can be used to consider the above issues; instead, each patient-handling 
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task would have to be separately analyzed to determine how to maximize the reduction 

of both the peak and cumulative lumbar forces during a manoeuver. However, no 

published literature was found for a comparison or basis that attempted to quantify the 

correlation and possible association between NIRS and motion capture system related 

do human musculoskeletal system.  

 Since, to our knowledge, no data were available on the variability of ESM 

hemodynamic activity during patient-handling task, generalizability of the present 

findings is unknown. 

4.6. Conclusion 

 This study shows that the ESM tissue oxygenation index decreased in all 

subjects during patient-handling task. Along with the increased in peak L3/L4 joint 

moment. These finding suggest that the longer hTR is, a higher risk of muscle injury 

might be developed.  

 We encourage the conduction of further study towards developing new 

guidelines that consider the effects of dynamic loads and hemodynamics for preventing 

LBP on workers. This would contribute to reducing incidences of worker illness and 

injury, thereby improving the overall well-being of workers. The results of the present 

study showed that the quantitative estimation of individual low back joint moments and 

oxygenation level provide information for the design of proper work/rest schedules for 

caregivers that perform patient-handling tasks. 
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Chapter 5 

General Conclusions 
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5.1. Conclusions 

 Three conclusions relative to future research of this type can be drawn from this 

study. The first part of conclusion dealt with an experimental approach of the isometric 

contraction of ESM measuring with EMG and NIRS. Combining NIRS and EMG it was 

shown that NIRS-derived oxygenation responses to varied of period contractions it has 

correlated with EMG myoelectric responses. For a sustained contraction, responses 

were of a reasonable physiological nature was done assessing the myoelectric 

manifestations. For a 30-40% MVC contraction sustained for 2-3 minutes (or until 

fatigue), subjects had a longer hTR, but oxygenation responses during the contraction 

were different between them. By knowing the hTR it is possible somehow evaluate the 

proper time to rest and prevent muscle to fatigue. The responses for oxygenation and 

myoelectric activity were time and specific. Based on this findings, NIRS demonstrated 

to be a suitable technique for assessing physiological measurement of the ESM, 

including the assess of hTR.  

 The second part of conclusion is related to the mechanisms of fatigue after 

isometric contractions of EMS. A reduction in the strength (i.e., EMG), endurance, and 

oxygenation levels (i.e., NIRS) of the low back muscles has been implicated as a 

contributory factor to fatigue. Adequate blood supply is obviously the most essential 

component to withstand fatigue and prevent the loss of lumbar muscle function. 

However, it was observed that after 40% of time to exhaustion, the TOI trend remained 

fairly consistent and showed a plateau until the end of the exercise. Necessary hTR of 

20 to 38 s (right) and 22 to 32 (left) with 155 ± 33 s was shown. Furthermore, prolonged 
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static posture might diminish oxygenation level and MF, increasing susceptibility to 

fatigue. 

 The third conclusion, based on the results of the caregiver’s ESM contraction 

during transfer movement, it was thought that allowing breaks or recess between work 

schedules would be more effective in reducing fatigue rather than using short and 

frequent recovery time during working cycle. 

In summary, the general conclusions from this research address several aspects 

of the erector spinae muscle contraction in NIRS based on the oxygenation and 

reoxygenation level. The feasibility of building a recovery time model with few 

representative samples has been demonstrated. 
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5.2. Recommend for the Future Work 

A concern in the thesis is the characteristics of the subjects (college students) in 

being different form the reality of caregivers. Although, the aim of this thesis was to 

examine the movement itself. Thus, for future directions applying NIRS for studying 

caregiver /nurses in their labor places is important to robust the data. 

Chapter 2: On first conclusion, it was shown that MF decrease as the 

oxygenation level declines during all tasks (isometric contraction), which should taken 

into account in future studies to understand the mechanisms of fatigue. The NIRS 

proved to be a valid tool to measure the hTR after exercise. NIRS data might help 

comprehend the mechanisms to prevent injury. 

Chapter 3: The findings of this study have implications for future investigations 

on the mechanism of fatigue from low back muscle. A reduction in the strength (i.e., 

EMG), endurance, and oxygenation levels (i.e., NIRS) of the low back muscles has 

been implicated as a contributory factor to fatigue. Adequate blood supply is obviously 

the most essential component to withstand fatigue and prevent the loss of lumbar 

muscle function. Necessary hTR of 20 to 38 s (right) and 22 to 32 (left) with 155 ± 33 s 

was shown. Furthermore, prolonged static posture might diminish oxygenation level 

and MF, increasing susceptibility to fatigue. 

Chapter 4: We encourage the conduction of further study towards developing 

new guidelines that consider the effects of dynamic loads and hemodynamics for 

preventing LBP on workers. This would contribute to reducing incidences of worker 

illness and injury, thereby improving the overall well-being of workers. The results of 

the present study showed that the quantitative estimation of individual low back joint 
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moments and oxygenation level provide information for the design of proper work/rest 

schedules for caregivers that perform patient-handling tasks. 
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